BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 21873978)

  • 1. The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization.
    Friel CT; Howard J
    EMBO J; 2011 Aug; 30(19):3928-39. PubMed ID: 21873978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends.
    Hunter AW; Caplow M; Coy DL; Hancock WO; Diez S; Wordeman L; Howard J
    Mol Cell; 2003 Feb; 11(2):445-57. PubMed ID: 12620232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights into the Coupling between Microtubule Depolymerization and ATP Hydrolysis by Kinesin-13 Protein Kif2C.
    Wang W; Shen T; Guerois R; Zhang F; Kuerban H; Lv Y; Gigant B; Knossow M; Wang C
    J Biol Chem; 2015 Jul; 290(30):18721-31. PubMed ID: 26055718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends.
    Helenius J; Brouhard G; Kalaidzidis Y; Diez S; Howard J
    Nature; 2006 May; 441(7089):115-9. PubMed ID: 16672973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity.
    Moore A; Wordeman L
    Biochem J; 2004 Oct; 383(Pt 2):227-35. PubMed ID: 15250824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization.
    Burns KM; Wagenbach M; Wordeman L; Schriemer DC
    Structure; 2014 Aug; 22(8):1173-1183. PubMed ID: 25066134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-length dimeric MCAK is a more efficient microtubule depolymerase than minimal domain monomeric MCAK.
    Hertzer KM; Ems-McClung SC; Kline-Smith SL; Lipkin TG; Gilbert SP; Walczak CE
    Mol Biol Cell; 2006 Feb; 17(2):700-10. PubMed ID: 16291860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of stopped-flow fluorescence and labeled nucleotides to analyze the ATP turnover cycle of kinesins.
    Patel JT; Belsham HR; Rathbone AJ; Friel CT
    J Vis Exp; 2014 Oct; (92):e52142. PubMed ID: 25350116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the kinesin-13 neck in microtubule depolymerization.
    Moores CA; Cooper J; Wagenbach M; Ovechkina Y; Wordeman L; Milligan RA
    Cell Cycle; 2006 Aug; 5(16):1812-5. PubMed ID: 16929184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The family-specific α4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition.
    Patel JT; Belsham HR; Rathbone AJ; Wickstead B; Gell C; Friel CT
    Open Biol; 2016 Oct; 6(10):. PubMed ID: 27733589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kin I kinesins: insights into the mechanism of depolymerization.
    Hertzer KM; Ems-McClung SC; Walczak CE
    Crit Rev Biochem Mol Biol; 2003; 38(6):453-69. PubMed ID: 14695126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of KinI kinesin ATPase activity by binding to the microtubule lattice.
    Moores CA; Hekmat-Nejad M; Sakowicz R; Milligan RA
    J Cell Biol; 2003 Dec; 163(5):963-71. PubMed ID: 14662742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kif2C minimal functional domain has unusual nucleotide binding properties that are adapted to microtubule depolymerization.
    Wang W; Jiang Q; Argentini M; Cornu D; Gigant B; Knossow M; Wang C
    J Biol Chem; 2012 Apr; 287(18):15143-53. PubMed ID: 22403406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global and local control of microtubule destabilization promoted by a catastrophe kinesin MCAK/XKCM1.
    Kinoshita K; Noetzel TL; Arnal I; Drechsel DN; Hyman AA
    J Muscle Res Cell Motil; 2006; 27(2):107-14. PubMed ID: 16450057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Catalytic Microtubule Depolymerization via KIF2-Tubulin Transitional Conformation.
    Ogawa T; Saijo S; Shimizu N; Jiang X; Hirokawa N
    Cell Rep; 2017 Sep; 20(11):2626-2638. PubMed ID: 28903043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends.
    Sproul LR; Anderson DJ; Mackey AT; Saunders WS; Gilbert SP
    Curr Biol; 2005 Aug; 15(15):1420-7. PubMed ID: 16085496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-steady-state kinetics of the microtubule-kinesin ATPase.
    Gilbert SP; Johnson KA
    Biochemistry; 1994 Feb; 33(7):1951-60. PubMed ID: 8110800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association.
    Ems-McClung SC; Hainline SG; Devare J; Zong H; Cai S; Carnes SK; Shaw SL; Walczak CE
    Curr Biol; 2013 Dec; 23(24):2491-9. PubMed ID: 24291095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner.
    Bell KM; Cha HK; Sindelar CV; Cochran JC
    J Biol Chem; 2017 Sep; 292(35):14680-14694. PubMed ID: 28701465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A kinesin-13 mutant catalytically depolymerizes microtubules in ADP.
    Wagenbach M; Domnitz S; Wordeman L; Cooper J
    J Cell Biol; 2008 Nov; 183(4):617-23. PubMed ID: 19001124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.