BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21874655)

  • 1. Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet.
    Kimura Y; Gel M; Techaumnat B; Oana H; Kotera H; Washizu M
    Electrophoresis; 2011 Sep; 32(18):2496-501. PubMed ID: 21874655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microorifice-based high-yield cell fusion on microfluidic chip: electrofusion of selected pairs and fusant viability.
    Gel M; Suzuki S; Kimura Y; Kurosawa O; Techaumnat B; Oana H; Washizu M
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):300-5. PubMed ID: 20142145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput dielectrophoresis-based cell electrofusion microfluidic device.
    Hu N; Yang J; Yin ZQ; Ai Y; Qian S; Svir IB; Xia B; Yan JW; Hou WS; Zheng XL
    Electrophoresis; 2011 Sep; 32(18):2488-95. PubMed ID: 21853446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion.
    Clow AL; Gaynor PT; Oback BJ
    Biomed Microdevices; 2010 Oct; 12(5):777-86. PubMed ID: 20499188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes.
    Şen M; Ino K; Ramón-Azcón J; Shiku H; Matsue T
    Lab Chip; 2013 Sep; 13(18):3650-2. PubMed ID: 23884281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution analyses of cell fusion dynamics in a biochip.
    Mottet G; Le Pioufle B; Mir LM
    Electrophoresis; 2012 Aug; 33(16):2508-15. PubMed ID: 22899258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate.
    Cheng W; Li SZ; Zeng Q; Yu XL; Wang Y; Chan HL; Liu W; Guo SS; Zhao XZ
    Electrophoresis; 2011 Nov; 32(23):3371-7. PubMed ID: 22058049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation.
    Kemna EW; Wolbers F; Vermes I; van den Berg A
    Electrophoresis; 2011 Nov; 32(22):3138-46. PubMed ID: 22025094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array.
    Gel M; Kimura Y; Kurosawa O; Oana H; Kotera H; Washizu M
    Biomicrofluidics; 2010 Jun; 4(2):. PubMed ID: 20697592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell pairing using microwell array electrodes based on dielectrophoresis.
    Yoshimura Y; Tomita M; Mizutani F; Yasukawa T
    Anal Chem; 2014 Jul; 86(14):6818-22. PubMed ID: 24947270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap.
    Ho CT; Lin RZ; Chang WY; Chang HY; Liu CH
    Lab Chip; 2006 Jun; 6(6):724-34. PubMed ID: 16738722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How medium osmolarity influences dielectrophoretically assisted on-chip electrofusion.
    Hamdi FS; Français O; Dufour-Gergam E; Le Pioufle B
    Bioelectrochemistry; 2014 Dec; 100():27-35. PubMed ID: 25012938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages.
    Kirschbaum M; Guernth-Marschner CR; Cherré S; de Pablo Peña A; Jaeger MS; Kroczek RA; Schnelle T; Mueller T; Duschl C
    Lab Chip; 2012 Feb; 12(3):443-50. PubMed ID: 22124613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling two-dimensional movement of microparticles over an electrode array surface.
    Lin JT; Yeow JT; Wan W
    Biomed Microdevices; 2009 Feb; 11(1):193-200. PubMed ID: 18815885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3-D microfluidic combinatorial cell array.
    Liu MC; Tai YC
    Biomed Microdevices; 2011 Feb; 13(1):191-201. PubMed ID: 21063783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.