These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 21875082)
1. ONIOM(DFT:MM) study of 2-hydroxyethylphosphonate dioxygenase: what determines the destinies of different substrates? Hirao H; Morokuma K J Am Chem Soc; 2011 Sep; 133(37):14550-3. PubMed ID: 21875082 [TBL] [Abstract][Full Text] [Related]
2. The reaction mechanism of hydroxyethylphosphonate dioxygenase: a QM/MM study. Du L; Gao J; Liu Y; Zhang D; Liu C Org Biomol Chem; 2012 Feb; 10(5):1014-24. PubMed ID: 22143311 [TBL] [Abstract][Full Text] [Related]
3. Ferric superoxide and ferric hydroxide are used in the catalytic mechanism of hydroxyethylphosphonate dioxygenase: a density functional theory investigation. Hirao H; Morokuma K J Am Chem Soc; 2010 Dec; 132(50):17901-9. PubMed ID: 21121666 [TBL] [Abstract][Full Text] [Related]
4. Mechanism and substrate recognition of 2-hydroxyethylphosphonate dioxygenase. Peck SC; Cooke HA; Cicchillo RM; Malova P; Hammerschmidt F; Nair SK; van der Donk WA Biochemistry; 2011 Aug; 50(30):6598-605. PubMed ID: 21711001 [TBL] [Abstract][Full Text] [Related]
5. Hydroperoxylation by hydroxyethylphosphonate dioxygenase. Whitteck JT; Cicchillo RM; van der Donk WA J Am Chem Soc; 2009 Nov; 131(44):16225-32. PubMed ID: 19839620 [TBL] [Abstract][Full Text] [Related]
6. Water-dependent reaction pathways: an essential factor for the catalysis in HEPD enzyme. Du L; Gao J; Liu Y; Liu C J Phys Chem B; 2012 Oct; 116(39):11837-44. PubMed ID: 22950439 [TBL] [Abstract][Full Text] [Related]
7. On the stereochemistry of 2-hydroxyethylphosphonate dioxygenase. Whitteck JT; Malova P; Peck SC; Cicchillo RM; Hammerschmidt F; van der Donk WA J Am Chem Soc; 2011 Mar; 133(12):4236-9. PubMed ID: 21381767 [TBL] [Abstract][Full Text] [Related]
8. O-H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase. Peck SC; Wang C; Dassama LM; Zhang B; Guo Y; Rajakovich LJ; Bollinger JM; Krebs C; van der Donk WA J Am Chem Soc; 2017 Feb; 139(5):2045-2052. PubMed ID: 28092705 [TBL] [Abstract][Full Text] [Related]
9. Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen? Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S Proteins; 2006 Sep; 64(4):845-50. PubMed ID: 16786599 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the mechanism of hydroxylation by 4-hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase from intermediate partitioning in active site variants. Shah DD; Conrad JA; Heinz B; Brownlee JM; Moran GR Biochemistry; 2011 Sep; 50(35):7694-704. PubMed ID: 21815644 [TBL] [Abstract][Full Text] [Related]
11. DFT study on the catalytic reactivity of a functional model complex for intradiol-cleaving dioxygenases. Georgiev V; Noack H; Borowski T; Blomberg MR; Siegbahn PE J Phys Chem B; 2010 May; 114(17):5878-85. PubMed ID: 20387788 [TBL] [Abstract][Full Text] [Related]
12. ONIOM study on a missing piece in our understanding of heme chemistry: bacterial tryptophan 2,3-dioxygenase with dual oxidants. Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K J Am Chem Soc; 2010 Sep; 132(34):11993-2005. PubMed ID: 20698527 [TBL] [Abstract][Full Text] [Related]
13. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6. Carrell TG; Bourles E; Lin M; Dismukes GC Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176 [TBL] [Abstract][Full Text] [Related]
14. Oxygen-18 Kinetic Isotope Effects of Nonheme Iron Enzymes HEPD and MPnS Support Iron(III) Superoxide as the Hydrogen Abstraction Species. Zhu H; Peck SC; Bonnot F; van der Donk WA; Klinman JP J Am Chem Soc; 2015 Aug; 137(33):10448-51. PubMed ID: 26267117 [TBL] [Abstract][Full Text] [Related]
15. Origins of enantioselectivity in the chiral Brønsted acid catalyzed hydrophosphonylation of imines. Shi FQ; Song BA Org Biomol Chem; 2009 Apr; 7(7):1292-8. PubMed ID: 19300812 [TBL] [Abstract][Full Text] [Related]
16. Locally enhanced sampling study of dioxygen diffusion pathways in homoprotocatechuate 2,3-dioxygenase. Xu L; Liu X; Zhao W; Wang X J Phys Chem B; 2009 Oct; 113(41):13596-603. PubMed ID: 19761222 [TBL] [Abstract][Full Text] [Related]
17. A common late-stage intermediate in catalysis by 2-hydroxyethyl-phosphonate dioxygenase and methylphosphonate synthase. Peck SC; Chekan JR; Ulrich EC; Nair SK; van der Donk WA J Am Chem Soc; 2015 Mar; 137(9):3217-20. PubMed ID: 25699631 [TBL] [Abstract][Full Text] [Related]
18. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis. Cicchillo RM; Zhang H; Blodgett JA; Whitteck JT; Li G; Nair SK; van der Donk WA; Metcalf WW Nature; 2009 Jun; 459(7248):871-4. PubMed ID: 19516340 [TBL] [Abstract][Full Text] [Related]
19. Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme. Higgins LJ; Yan F; Liu P; Liu HW; Drennan CL Nature; 2005 Oct; 437(7060):838-44. PubMed ID: 16015285 [TBL] [Abstract][Full Text] [Related]
20. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation? de Visser SP; Tan LS J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]