BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21875082)

  • 1. ONIOM(DFT:MM) study of 2-hydroxyethylphosphonate dioxygenase: what determines the destinies of different substrates?
    Hirao H; Morokuma K
    J Am Chem Soc; 2011 Sep; 133(37):14550-3. PubMed ID: 21875082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reaction mechanism of hydroxyethylphosphonate dioxygenase: a QM/MM study.
    Du L; Gao J; Liu Y; Zhang D; Liu C
    Org Biomol Chem; 2012 Feb; 10(5):1014-24. PubMed ID: 22143311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferric superoxide and ferric hydroxide are used in the catalytic mechanism of hydroxyethylphosphonate dioxygenase: a density functional theory investigation.
    Hirao H; Morokuma K
    J Am Chem Soc; 2010 Dec; 132(50):17901-9. PubMed ID: 21121666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and substrate recognition of 2-hydroxyethylphosphonate dioxygenase.
    Peck SC; Cooke HA; Cicchillo RM; Malova P; Hammerschmidt F; Nair SK; van der Donk WA
    Biochemistry; 2011 Aug; 50(30):6598-605. PubMed ID: 21711001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroperoxylation by hydroxyethylphosphonate dioxygenase.
    Whitteck JT; Cicchillo RM; van der Donk WA
    J Am Chem Soc; 2009 Nov; 131(44):16225-32. PubMed ID: 19839620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-dependent reaction pathways: an essential factor for the catalysis in HEPD enzyme.
    Du L; Gao J; Liu Y; Liu C
    J Phys Chem B; 2012 Oct; 116(39):11837-44. PubMed ID: 22950439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the stereochemistry of 2-hydroxyethylphosphonate dioxygenase.
    Whitteck JT; Malova P; Peck SC; Cicchillo RM; Hammerschmidt F; van der Donk WA
    J Am Chem Soc; 2011 Mar; 133(12):4236-9. PubMed ID: 21381767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O-H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase.
    Peck SC; Wang C; Dassama LM; Zhang B; Guo Y; Rajakovich LJ; Bollinger JM; Krebs C; van der Donk WA
    J Am Chem Soc; 2017 Feb; 139(5):2045-2052. PubMed ID: 28092705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen?
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2006 Sep; 64(4):845-50. PubMed ID: 16786599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the mechanism of hydroxylation by 4-hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase from intermediate partitioning in active site variants.
    Shah DD; Conrad JA; Heinz B; Brownlee JM; Moran GR
    Biochemistry; 2011 Sep; 50(35):7694-704. PubMed ID: 21815644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFT study on the catalytic reactivity of a functional model complex for intradiol-cleaving dioxygenases.
    Georgiev V; Noack H; Borowski T; Blomberg MR; Siegbahn PE
    J Phys Chem B; 2010 May; 114(17):5878-85. PubMed ID: 20387788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ONIOM study on a missing piece in our understanding of heme chemistry: bacterial tryptophan 2,3-dioxygenase with dual oxidants.
    Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K
    J Am Chem Soc; 2010 Sep; 132(34):11993-2005. PubMed ID: 20698527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen-18 Kinetic Isotope Effects of Nonheme Iron Enzymes HEPD and MPnS Support Iron(III) Superoxide as the Hydrogen Abstraction Species.
    Zhu H; Peck SC; Bonnot F; van der Donk WA; Klinman JP
    J Am Chem Soc; 2015 Aug; 137(33):10448-51. PubMed ID: 26267117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of enantioselectivity in the chiral Brønsted acid catalyzed hydrophosphonylation of imines.
    Shi FQ; Song BA
    Org Biomol Chem; 2009 Apr; 7(7):1292-8. PubMed ID: 19300812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locally enhanced sampling study of dioxygen diffusion pathways in homoprotocatechuate 2,3-dioxygenase.
    Xu L; Liu X; Zhao W; Wang X
    J Phys Chem B; 2009 Oct; 113(41):13596-603. PubMed ID: 19761222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A common late-stage intermediate in catalysis by 2-hydroxyethyl-phosphonate dioxygenase and methylphosphonate synthase.
    Peck SC; Chekan JR; Ulrich EC; Nair SK; van der Donk WA
    J Am Chem Soc; 2015 Mar; 137(9):3217-20. PubMed ID: 25699631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis.
    Cicchillo RM; Zhang H; Blodgett JA; Whitteck JT; Li G; Nair SK; van der Donk WA; Metcalf WW
    Nature; 2009 Jun; 459(7248):871-4. PubMed ID: 19516340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme.
    Higgins LJ; Yan F; Liu P; Liu HW; Drennan CL
    Nature; 2005 Oct; 437(7060):838-44. PubMed ID: 16015285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.