These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 21875082)
21. Density functional theory study on a missing piece in understanding of heme chemistry: the reaction mechanism for indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K J Am Chem Soc; 2008 Sep; 130(37):12299-309. PubMed ID: 18712870 [TBL] [Abstract][Full Text] [Related]
22. Lone pair-pi and pi-pi interactions play an important role in proton-coupled electron transfer reactions. DiLabio GA; Johnson ER J Am Chem Soc; 2007 May; 129(19):6199-203. PubMed ID: 17444643 [TBL] [Abstract][Full Text] [Related]
23. Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: a hybrid DFT study. Borowski T; Siegbahn PE J Am Chem Soc; 2006 Oct; 128(39):12941-53. PubMed ID: 17002391 [TBL] [Abstract][Full Text] [Related]
24. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties. Velusamy M; Mayilmurugan R; Palaniandavar M Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874 [TBL] [Abstract][Full Text] [Related]
25. Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad. Bassan A; Borowski T; Siegbahn PE Dalton Trans; 2004 Oct; (20):3153-62. PubMed ID: 15483690 [TBL] [Abstract][Full Text] [Related]
26. Switching the redox mechanism: models for proton-coupled electron transfer from tyrosine and tryptophan. Sjödin M; Styring S; Wolpher H; Xu Y; Sun L; Hammarström L J Am Chem Soc; 2005 Mar; 127(11):3855-63. PubMed ID: 15771521 [TBL] [Abstract][Full Text] [Related]
27. Epimerization and desaturation by carbapenem synthase (CarC). A hybrid DFT study. Borowski T; Broclawik E; Schofield CJ; Siegbahn PE J Comput Chem; 2006 Apr; 27(6):740-8. PubMed ID: 16521121 [TBL] [Abstract][Full Text] [Related]
28. The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the α-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK. Sucipto H; Kudo F; Eguchi T Angew Chem Int Ed Engl; 2012 Apr; 51(14):3428-31. PubMed ID: 22374809 [TBL] [Abstract][Full Text] [Related]
29. Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase. Matera I; Ferraroni M; Bürger S; Scozzafava A; Stolz A; Briganti F J Mol Biol; 2008 Jul; 380(5):856-68. PubMed ID: 18572191 [TBL] [Abstract][Full Text] [Related]
30. Experimental and computational investigations of oxygen reactivity in a heme and tyrosyl radical-containing fatty acid α-(di)oxygenase. Huff GS; Doncheva IS; Brinkley DW; Angeles-Boza AM; Mukherjee A; Cramer CJ; Roth JP Biochemistry; 2011 Aug; 50(34):7375-89. PubMed ID: 21790181 [TBL] [Abstract][Full Text] [Related]
31. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion. Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053 [TBL] [Abstract][Full Text] [Related]
32. On the conversion of structural analogues of (S)-2-hydroxypropylphosphonic acid to epoxides by the final enzyme of fosfomycin biosynthesis in S. fradiae. Schweifer A; Hammerschmidt F Bioorg Med Chem Lett; 2008 May; 18(10):3056-9. PubMed ID: 18155909 [TBL] [Abstract][Full Text] [Related]
34. Complex mechanism of the gas phase reaction between formic acid and hydroxyl radical. Proton coupled electron transfer versus radical hydrogen abstraction mechanisms. Anglada JM J Am Chem Soc; 2004 Aug; 126(31):9809-20. PubMed ID: 15291585 [TBL] [Abstract][Full Text] [Related]
35. Comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions. Hammes-Schiffer S Chemphyschem; 2002 Jan; 3(1):33-42. PubMed ID: 12465474 [TBL] [Abstract][Full Text] [Related]
36. Alpha-dioxygenases. Hamberg M; Ponce de Leon I; Rodriguez MJ; Castresana C Biochem Biophys Res Commun; 2005 Dec; 338(1):169-74. PubMed ID: 16137659 [TBL] [Abstract][Full Text] [Related]
37. Activation of molecular oxygen by a dioxygenase pathway by a ruthenium bis-bipyridine compound with a proximal selenium site. Laskavy A; Shimon LJ; Konstantinovski L; Iron MA; Neumann R J Am Chem Soc; 2010 Jan; 132(2):517-23. PubMed ID: 20014850 [TBL] [Abstract][Full Text] [Related]
38. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis. Bräuer A; Beck P; Hintermann L; Groll M Angew Chem Int Ed Engl; 2016 Jan; 55(1):422-6. PubMed ID: 26553478 [TBL] [Abstract][Full Text] [Related]
39. The α-ketoglutarate/Fe(II)-dependent dioxygenase VldW is responsible for the formation of validamycin B. Almabruk KH; Asamizu S; Chang A; Varghese SG; Mahmud T Chembiochem; 2012 Oct; 13(15):2209-11. PubMed ID: 22961651 [TBL] [Abstract][Full Text] [Related]
40. Is it true dioxygenase or classic autoxidation catalysis? Re-investigation of a claimed dioxygenase catalyst based on a Ru(2)-incorporated, polyoxometalate precatalyst. Yin CX; Finke RG Inorg Chem; 2005 Jun; 44(12):4175-88. PubMed ID: 15934747 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]