These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21875612)

  • 21. Guidance of eye movements during visual conjunction search: local and global contextual effects on target discriminability.
    Shen K; Paré M
    J Neurophysiol; 2006 May; 95(5):2845-55. PubMed ID: 16467428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does conspicuity enhance distraction? Saliency and eye landing position when searching for objects.
    Foulsham T; Underwood G
    Q J Exp Psychol (Hove); 2009 Jun; 62(6):1088-98. PubMed ID: 19142829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Task-irrelevant stimulus salience affects visual search.
    Lamy D; Zoaris L
    Vision Res; 2009 May; 49(11):1472-80. PubMed ID: 19289140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Salience drives overt selection of two equally relevant visual targets.
    Christie GJ; Spalek TM; McDonald JJ
    Atten Percept Psychophys; 2018 Aug; 80(6):1342-1349. PubMed ID: 29949118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oculomotor capture during real-world scene viewing depends on cognitive load.
    Matsukura M; Brockmole JR; Boot WR; Henderson JM
    Vision Res; 2011 Mar; 51(6):546-52. PubMed ID: 21310171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of items in working memory on the deployment of attention and the eyes during visual search.
    Houtkamp R; Roelfsema PR
    J Exp Psychol Hum Percept Perform; 2006 Apr; 32(2):423-42. PubMed ID: 16634680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Goal-driven modulation as a function of time in saccadic target selection.
    van Zoest W; Donk M
    Q J Exp Psychol (Hove); 2008 Oct; 61(10):1553-72. PubMed ID: 17926227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visual search deficits in Parkinson's disease are attenuated by bottom-up target salience and top-down information.
    Horowitz TS; Choi WY; Horvitz JC; Côté LJ; Mangels JA
    Neuropsychologia; 2006; 44(10):1962-77. PubMed ID: 16580700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salience-based progression of visual attention.
    Michael GA; Gálvez-García G
    Behav Brain Res; 2011 Oct; 224(1):87-99. PubMed ID: 21658415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scene context guides eye movements during visual search.
    Neider MB; Zelinsky GJ
    Vision Res; 2006 Mar; 46(5):614-21. PubMed ID: 16236336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Misdirection, attention and awareness: inattentional blindness reveals temporal relationship between eye movements and visual awareness.
    Kuhn G; Findlay JM
    Q J Exp Psychol (Hove); 2010 Jan; 63(1):136-46. PubMed ID: 19459083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novelty and saliency in attentional capture by unannounced motion singletons.
    Becker SI; Horstmann G
    Acta Psychol (Amst); 2011 Mar; 136(3):290-9. PubMed ID: 21208608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of visual search efficiency on the time-course of identity-based SR-compatibility.
    van Zoest W; Kingstone A; Theeuwes J
    Acta Psychol (Amst); 2012 May; 140(1):101-9. PubMed ID: 22522824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of target and distractor processing in visual search: evidence from event-related brain potentials.
    Hilimire MR; Mounts JR; Parks NA; Corballis PM
    Neurosci Lett; 2011 May; 495(3):196-200. PubMed ID: 21457759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual search and eye movements in patients with chronic solvent-induced toxic encephalopathy.
    Ojanpää H; Näsänen R; Päällysaho J; Akila R; Müller K; Kaukiainen A; Sainio M
    Neurotoxicology; 2006 Dec; 27(6):1013-23. PubMed ID: 16765447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The allocation of attention in displays with simultaneously presented singletons.
    Akyürek EG; Schubö A
    Biol Psychol; 2011 May; 87(2):218-25. PubMed ID: 21406208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D; Coe B; Munoz DP; Theeuwes J
    J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oculomotor evidence for top-down control following the initial saccade.
    Siebold A; van Zoest W; Donk M
    PLoS One; 2011; 6(9):e23552. PubMed ID: 21931603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eye movements selective for spatial frequency and orientation during active visual search.
    Tavassoli A; Linde Iv; Bovik AC; Cormack LK
    Vision Res; 2009 Jan; 49(2):173-81. PubMed ID: 18992270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning by selection: visual search and object perception in young infants.
    Amso D; Johnson SP
    Dev Psychol; 2006 Nov; 42(6):1236-45. PubMed ID: 17087555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.