These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 21875627)
1. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. Di Gioia D; Luziatelli F; Negroni A; Ficca AG; Fava F; Ruzzi M J Biotechnol; 2011 Dec; 156(4):309-16. PubMed ID: 21875627 [TBL] [Abstract][Full Text] [Related]
2. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Graf N; Altenbuchner J Appl Microbiol Biotechnol; 2014 Jan; 98(1):137-49. PubMed ID: 24136472 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology. Kaur B; Chakraborty D; Kumar B Appl Microbiol Biotechnol; 2014 Oct; 98(20):8539-51. PubMed ID: 25077778 [TBL] [Abstract][Full Text] [Related]
4. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin. Fleige C; Meyer F; Steinbüchel A Appl Environ Microbiol; 2016 Jun; 82(11):3410-3419. PubMed ID: 27037121 [TBL] [Abstract][Full Text] [Related]
5. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Plaggenborg R; Overhage J; Loos A; Archer JA; Lessard P; Sinskey AJ; Steinbüchel A; Priefert H Appl Microbiol Biotechnol; 2006 Oct; 72(4):745-55. PubMed ID: 16421716 [TBL] [Abstract][Full Text] [Related]
6. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Barghini P; Di Gioia D; Fava F; Ruzzi M Microb Cell Fact; 2007 Apr; 6():13. PubMed ID: 17437627 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Chakraborty D; Gupta G; Kaur B Protein Expr Purif; 2016 Dec; 128():123-33. PubMed ID: 27591788 [TBL] [Abstract][Full Text] [Related]
8. Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Achterholt S; Priefert H; Steinbüchel A Appl Microbiol Biotechnol; 2000 Dec; 54(6):799-807. PubMed ID: 11152072 [TBL] [Abstract][Full Text] [Related]
9. Regulation of ferulic catabolic genes in Pseudomonas fluorescens BF13: involvement of a MarR family regulator. Calisti C; Ficca AG; Barghini P; Ruzzi M Appl Microbiol Biotechnol; 2008 Sep; 80(3):475-83. PubMed ID: 18575856 [TBL] [Abstract][Full Text] [Related]
11. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Plaggenborg R; Overhage J; Steinbüchel A; Priefert H Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):528-35. PubMed ID: 12764569 [TBL] [Abstract][Full Text] [Related]
12. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199. Overhage J; Priefert H; Steinbüchel A Appl Environ Microbiol; 1999 Nov; 65(11):4837-47. PubMed ID: 10543794 [TBL] [Abstract][Full Text] [Related]
13. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Narbad A; Gasson MJ Microbiology (Reading); 1998 May; 144 ( Pt 5)():1397-1405. PubMed ID: 9611814 [TBL] [Abstract][Full Text] [Related]
14. Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. Gasson MJ; Kitamura Y; McLauchlan WR; Narbad A; Parr AJ; Parsons EL; Payne J; Rhodes MJ; Walton NJ J Biol Chem; 1998 Feb; 273(7):4163-70. PubMed ID: 9461612 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Fleige C; Hansen G; Kroll J; Steinbüchel A Appl Environ Microbiol; 2013 Jan; 79(1):81-90. PubMed ID: 23064333 [TBL] [Abstract][Full Text] [Related]
16. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. Yang W; Tang H; Ni J; Wu Q; Hua D; Tao F; Xu P PLoS One; 2013; 8(6):e67339. PubMed ID: 23840666 [TBL] [Abstract][Full Text] [Related]
17. A ternary complex of hydroxycinnamoyl-CoA hydratase-lyase (HCHL) with acetyl-CoA and vanillin gives insights into substrate specificity and mechanism. Bennett JP; Bertin L; Moulton B; Fairlamb IJ; Brzozowski AM; Walton NJ; Grogan G Biochem J; 2008 Sep; 414(2):281-9. PubMed ID: 18479250 [TBL] [Abstract][Full Text] [Related]
18. Novel approaches to the biosynthesis of vanillin. Walton NJ; Narbad A; Faulds C; Williamson G Curr Opin Biotechnol; 2000 Oct; 11(5):490-6. PubMed ID: 11024369 [TBL] [Abstract][Full Text] [Related]
19. Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Civolani C; Barghini P; Roncetti AR; Ruzzi M; Schiesser A Appl Environ Microbiol; 2000 Jun; 66(6):2311-7. PubMed ID: 10831404 [TBL] [Abstract][Full Text] [Related]
20. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli. Lee EG; Yoon SH; Das A; Lee SH; Li C; Kim JY; Choi MS; Oh DK; Kim SW Biotechnol Bioeng; 2009 Jan; 102(1):200-8. PubMed ID: 18683263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]