BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21875672)

  • 1. Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles.
    Zhu D; Li K; Faraco CC; Deng F; Zhang D; Guo L; Miller LS; Liu T
    Neuroimage; 2012 Jan; 59(2):1382-93. PubMed ID: 21875672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of fMRI-derived ROIs based on coherent functional interaction patterns.
    Deng F; Zhu D; Liu T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):214-22. PubMed ID: 23286133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual functional ROI optimization via maximization of group-wise consistency of structural and functional profiles.
    Li K; Guo L; Zhu D; Hu X; Han J; Liu T
    Neuroinformatics; 2012 Jul; 10(3):225-42. PubMed ID: 22281931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering dense and consistent landmarks in the brain.
    Zhu D; Zhang D; Faraco C; Li K; Deng F; Chen H; Jiang X; Guo L; Miller LS; Liu T
    Inf Process Med Imaging; 2011; 22():97-110. PubMed ID: 21761649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber-centered analysis of brain connectivities using DTI and resting state FMRI data.
    Lv J; Guo L; Hu X; Zhang T; Li K; Zhang D; Yang J; Liu T
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):143-50. PubMed ID: 20879309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.
    Geerligs L; Cam-Can ; Henson RN
    Neuroimage; 2016 Jul; 135():16-31. PubMed ID: 27114055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning an atlas of a cognitive process in its functional geometry.
    Langs G; Lashkari D; Sweet A; Tie Y; Rigolo L; Golby AJ; Golland P
    Inf Process Med Imaging; 2011; 22():135-46. PubMed ID: 21761652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group-wise FMRI activation detection on corresponding cortical landmarks.
    Lv J; Zhu D; Hu X; Zhang X; Zhang T; Han J; Guo L; Liu T
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):665-73. PubMed ID: 24579198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic sleep staging using fMRI functional connectivity data.
    Tagliazucchi E; von Wegner F; Morzelewski A; Borisov S; Jahnke K; Laufs H
    Neuroimage; 2012 Oct; 63(1):63-72. PubMed ID: 22743197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of fMRI data revisited: improving the sensitivity and reliability of fMRI group studies.
    Thirion B; Pinel P; Tucholka A; Roche A; Ciuciu P; Mangin JF; Poline JB
    IEEE Trans Med Imaging; 2007 Sep; 26(9):1256-69. PubMed ID: 17896597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying group-wise consistent white matter landmarks via novel fiber shape descriptor.
    Chen H; Zhang T; Liu T
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):66-73. PubMed ID: 24505650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated segmentation of the canine corpus callosum for the measurement of diffusion tensor imaging.
    Peterson DE; Chen SD; Calabrese E; White LE; Provenzale JM
    Neuroradiol J; 2016 Feb; 29(1):4-12. PubMed ID: 26577603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic deformable diffusion tensor registration for fiber population analysis.
    Irfanoglu MO; Machiraju R; Sammet S; Pierpaoli C; Knopp MV
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):1014-22. PubMed ID: 18982704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy-guided discovery of large-scale consistent connectivity-based cortical landmarks.
    Jiang X; Zhang T; Zhu D; Li K; Lv J; Guo L; Liu T
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):617-25. PubMed ID: 24505813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for using diffusion weighted imaging to improve cortical parcellation.
    Clarkson MJ; Malone IB; Modat M; Leung KK; Ryan N; Alexander DC; Fox NC; Ourselin S
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):534-41. PubMed ID: 20879272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting cortical ROIs via joint modeling of anatomical and connectional profiles.
    Zhang T; Zhu D; Jiang X; Ge B; Hu X; Han J; Guo L; Liu T
    Med Image Anal; 2013 Aug; 17(6):601-15. PubMed ID: 23666264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of spatial activation patterns as unsupervised segmentation of fMRI data.
    Golland P; Golland Y; Malach R
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):110-8. PubMed ID: 18051050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group-wise optimization of common brain landmarks with joint structural and functional regulations.
    Zhu D; Lv J; Chen H; Liu T
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):716-23. PubMed ID: 25485443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.