These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21875673)

  • 81. Effect on measurement accuracy of transillumination using sawtooth-shaped-function optical signal.
    Yang X; Hu Y; Li G; Lin L
    Rev Sci Instrum; 2016 Nov; 87(11):115106. PubMed ID: 27910699
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Using Light Polarization to Identify Fiber Orientation in Carbon Fiber Components: Metrological Analysis.
    Chiominto L; D'Emilia G; Natale E
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275596
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A syntactic methodology for automatic diagnosis by analysis of continuous time measurements using hierarchical signal representations.
    Tumer MB; Belfore LA; Ropella KM
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(6):951-65. PubMed ID: 18238246
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Synthetic approach to designing optical alignment systems.
    Whang AJ; Gallagher NC
    Appl Opt; 1988 Aug; 27(16):3534-41. PubMed ID: 20539412
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Visualization of polarized light with simultaneous suppression of unpolarized beams.
    Alperin DM; Paolini EE; Guérin DM
    Appl Opt; 1994 Mar; 33(7):1245-7. PubMed ID: 20862146
    [TBL] [Abstract][Full Text] [Related]  

  • 86. White-light reconstruction setup for shearograms using optical-fiber waveguides.
    Ng TW; Chau FS
    Appl Opt; 1994 Aug; 33(22):5050-1. PubMed ID: 20935886
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Note: Improving low-light-level image detection sensitivity with higher speed using auxiliary sinusoidal light signal.
    Tang H; Yu Z
    Rev Sci Instrum; 2015 Jun; 86(6):066104. PubMed ID: 26133879
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Backscattering polarimetric imaging of the human brain to determine the orientation and degree of alignment of nerve fiber bundles.
    Jain A; Ulrich L; Jaeger M; Schucht P; Frenz M; Günhan Akarcay H
    Biomed Opt Express; 2021 Jul; 12(7):4452-4466. PubMed ID: 34457425
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The Superior Fronto-Occipital Fasciculus in the Human Brain Revealed by Diffusion Spectrum Imaging Tractography: An Anatomical Reality or a Methodological Artifact?
    Bao Y; Wang Y; Wang W; Wang Y
    Front Neuroanat; 2017; 11():119. PubMed ID: 29321729
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Diattenuation of brain tissue and its impact on 3D polarized light imaging.
    Menzel M; Reckfort J; Weigand D; Köse H; Amunts K; Axer M
    Biomed Opt Express; 2017 Jul; 8(7):3163-3197. PubMed ID: 28717561
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Rethinking the standard trans-cortical approaches in the light of superficial white matter anatomy.
    Latini F; Ryttlefors M
    Neural Regen Res; 2015 Dec; 10(12):1906-9. PubMed ID: 26889162
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Polychromatic polarization microscope: bringing colors to a colorless world.
    Shribak M
    Sci Rep; 2015 Nov; 5():17340. PubMed ID: 26611150
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging.
    Allegra Mascaro AL; Costantini I; Margoni E; Iannello G; Bria A; Sacconi L; Pavone FS
    Biomed Opt Express; 2015 Nov; 6(11):4483-92. PubMed ID: 26601011
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI.
    Bastiani M; Roebroeck A
    Front Neuroanat; 2015; 9():77. PubMed ID: 26106304
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Layer-specific intracortical connectivity revealed with diffusion MRI.
    Leuze CW; Anwander A; Bazin PL; Dhital B; Stüber C; Reimann K; Geyer S; Turner R
    Cereb Cortex; 2014 Feb; 24(2):328-39. PubMed ID: 23099298
    [TBL] [Abstract][Full Text] [Related]  

  • 96. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging.
    Axer M; Grässel D; Kleiner M; Dammers J; Dickscheid T; Reckfort J; Hütz T; Eiben B; Pietrzyk U; Zilles K; Amunts K
    Front Neuroinform; 2011; 5():34. PubMed ID: 22232597
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Automatic identification of gray and white matter components in polarized light imaging.
    Dammers J; Breuer L; Axer M; Kleiner M; Eiben B; Grässel D; Dickscheid T; Zilles K; Amunts K; Shah NJ; Pietrzyk U
    Neuroimage; 2012 Jan; 59(2):1338-47. PubMed ID: 21875673
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Signal enhancement in polarized light imaging by means of independent component analysis.
    Dammers J; Axer M; Grässel D; Palm C; Zilles K; Amunts K; Pietrzyk U
    Neuroimage; 2010 Jan; 49(2):1241-8. PubMed ID: 19733674
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A new constrained ICA approach for optimal signal decomposition in polarized light imaging.
    Breuer L; Axer M; Dammers J
    J Neurosci Methods; 2013 Oct; 220(1):30-8. PubMed ID: 24012940
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Polarized light imaging of white matter architecture.
    Larsen L; Griffin LD; Grässel D; Witte OW; Axer H
    Microsc Res Tech; 2007 Oct; 70(10):851-63. PubMed ID: 17661367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.