BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2187602)

  • 1. Possible role for p34cdc2 kinase in etoposide-induced cell death of Chinese hamster ovary cells.
    Lock RB; Ross WE
    Cancer Res; 1990 Jun; 50(12):3767-71. PubMed ID: 2187602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells.
    Lock RB; Ross WE
    Cancer Res; 1990 Jun; 50(12):3761-6. PubMed ID: 2187601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of p34cdc2 kinase activation, p34cdc2 tyrosine dephosphorylation, and mitotic progression in Chinese hamster ovary cells exposed to etoposide.
    Lock RB
    Cancer Res; 1992 Apr; 52(7):1817-22. PubMed ID: 1551112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cell cycle progression in cisplatin-induced apoptosis in Chinese hamster ovary cells.
    Demarcq C; Bunch RT; Creswell D; Eastman A
    Cell Growth Differ; 1994 Sep; 5(9):983-93. PubMed ID: 7819136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells.
    Ling YH; el-Naggar AK; Priebe W; Perez-Soler R
    Mol Pharmacol; 1996 May; 49(5):832-41. PubMed ID: 8622633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novobiocin, nalidixic acid, etoposide, and 4'-(9-acridinylamino)methanesulfon-m-anisidide effects on G2 and mitotic Chinese hamster ovary cell progression.
    Rowley R; Kort L
    Cancer Res; 1989 Sep; 49(17):4752-7. PubMed ID: 2474373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The G2 block induced by DNA damage: a caffeine-resistant component independent of Cdc25C, MPM-2 phosphorylation, and H1 kinase activity.
    Barratt RA; Kao G; McKenna WG; Kuang J; Muschel RJ
    Cancer Res; 1998 Jun; 58(12):2639-45. PubMed ID: 9635591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferation-dependent topoisomerase II content as a determinant of antineoplastic drug action in human, mouse, and Chinese hamster ovary cells.
    Sullivan DM; Latham MD; Ross WE
    Cancer Res; 1987 Aug; 47(15):3973-9. PubMed ID: 3038304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phorbol ester TPA rapidly prevents activation of p34cdc2 histone H1 kinase and concomitantly the transition from G2 phase to mitosis in synchronized HeLa cells.
    Barth H; Kinzel V
    Exp Cell Res; 1994 Jun; 212(2):383-8. PubMed ID: 8187833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-sensitivity to topoisomerase II inhibitors in cytotoxic drug-hypersensitive Chinese hamster ovary cell lines.
    Robson CN; Hoban PR; Harris AL; Hickson ID
    Cancer Res; 1987 Mar; 47(6):1560-5. PubMed ID: 2434220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells.
    Holm C; Covey JM; Kerrigan D; Pommier Y
    Cancer Res; 1989 Nov; 49(22):6365-8. PubMed ID: 2553254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of p34cdc2 coincident with taxol-induced apoptosis.
    Donaldson KL; Goolsby GL; Kiener PA; Wahl AF
    Cell Growth Differ; 1994 Oct; 5(10):1041-50. PubMed ID: 7848905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical differences between staurosporine-induced apoptosis and premature mitosis.
    Yoshida M; Usui T; Tsujimura K; Inagaki M; Beppu T; Horinouchi S
    Exp Cell Res; 1997 May; 232(2):225-39. PubMed ID: 9168797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Etoposide-induced cytotoxicity in two human T-cell leukemic lines: delayed loss of membrane permeability rather than DNA fragmentation as an indicator of programmed cell death.
    Catchpoole DR; Stewart BW
    Cancer Res; 1993 Sep; 53(18):4287-96. PubMed ID: 8364925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal aberrations induced by 5-azacytidine combined with VP-16 (etoposide) in CHO-K1 and XRS-5 cell lines.
    GuimarĂ£es AP; Dias FL; Cardoso RS; Kronka SN; Sakamoto-Hojo ET
    Teratog Carcinog Mutagen; 2003; Suppl 1():171-86. PubMed ID: 12616607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed cell death (apoptosis) of mouse fibroblasts is induced by the topoisomerase II inhibitor etoposide.
    Mizumoto K; Rothman RJ; Farber JL
    Mol Pharmacol; 1994 Nov; 46(5):890-5. PubMed ID: 7969076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration-dependent variable effects of etoposide on the cell cycle of CML cells.
    Fukumi S; Horiguchi-Yamada J; Iwase S; Ohno T; Yamada H
    Anticancer Res; 2000; 20(5A):3105-10. PubMed ID: 11062729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration-dependent differences in the mechanisms by which caffeine potentiates etoposide cytotoxicity in HeLa cells.
    Lock RB; Galperina OV; Feldhoff RC; Rhodes LJ
    Cancer Res; 1994 Sep; 54(18):4933-9. PubMed ID: 8069859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of epipodophyllotoxin-induced cell death in poly(adenosine diphosphate-ribose) synthesis-deficient V79 Chinese hamster cell lines.
    Chatterjee S; Trivedi D; Petzold SJ; Berger NA
    Cancer Res; 1990 May; 50(9):2713-8. PubMed ID: 2328496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of acquired epipodophyllotoxin resistance in a Chinese hamster ovary cell line: loss of drug-stimulated DNA cleavage activity.
    Glisson B; Gupta R; Smallwood-Kentro S; Ross W
    Cancer Res; 1986 Apr; 46(4 Pt 2):1934-8. PubMed ID: 3004711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.