BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 21876232)

  • 1. Angiogenesis and healing with non-shrinking, fast degradeable PLGA/CaP scaffolds in critical-sized defects in the rabbit femur with or without osteogenically induced mesenchymal stem cells.
    Endres S; Hiebl B; Hägele J; Beltzer C; Fuhrmann R; Jäger V; Almeida M; Costa E; Santos C; Traupe H; Jung EM; Prantl L; Jung F; Wilke A; Franke RP
    Clin Hemorheol Microcirc; 2011; 48(1):29-40. PubMed ID: 21876232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure.
    He F; Ye J
    J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of segmental bone defects in the rabbit ulna using periosteum encapsulated mesenchymal stem cells-loaded poly (lactic-co-glycolic acid) scaffolds.
    Zhang X; Qi YY; Zhao TF; Li D; Dai XS; Niu L; He RX
    Chin Med J (Engl); 2012 Nov; 125(22):4031-6. PubMed ID: 23158138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits.
    Zhu S; Zhang B; Man C; Ma Y; Liu X; Hu J
    Cell Transplant; 2014 Apr; 23(6):715-27. PubMed ID: 24763260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold.
    Uematsu K; Hattori K; Ishimoto Y; Yamauchi J; Habata T; Takakura Y; Ohgushi H; Fukuchi T; Sato M
    Biomaterials; 2005 Jul; 26(20):4273-9. PubMed ID: 15683651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs.
    Wang W; Li B; Yang J; Xin L; Li Y; Yin H; Qi Y; Jiang Y; Ouyang H; Gao C
    Biomaterials; 2010 Dec; 31(34):8964-73. PubMed ID: 20822812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure.
    He F; Chen Y; Li J; Lin B; Ouyang Y; Yu B; Xia Y; Yu B; Ye J
    J Biomed Mater Res A; 2015 Apr; 103(4):1312-24. PubMed ID: 24890626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk based biomaterials to heal critical sized femur defects.
    Meinel L; Betz O; Fajardo R; Hofmann S; Nazarian A; Cory E; Hilbe M; McCool J; Langer R; Vunjak-Novakovic G; Merkle HP; Rechenberg B; Kaplan DL; Kirker-Head C
    Bone; 2006 Oct; 39(4):922-31. PubMed ID: 16757219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells.
    Yoon SJ; Park KS; Kim MS; Rhee JM; Khang G; Lee HB
    Tissue Eng; 2007 May; 13(5):1125-33. PubMed ID: 17394384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs.
    Lyons FG; Al-Munajjed AA; Kieran SM; Toner ME; Murphy CM; Duffy GP; O'Brien FJ
    Biomaterials; 2010 Dec; 31(35):9232-43. PubMed ID: 20863559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of in vivo bone regeneration efficacy of osteogenically undifferentiated human cord blood mesenchymal stem cells.
    Kang JM; Kang SW; La WG; Yang YS; Kim BS
    J Biomed Mater Res A; 2010 May; 93(2):666-72. PubMed ID: 19609878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model.
    Kim J; McBride S; Tellis B; Alvarez-Urena P; Song YH; Dean DD; Sylvia VL; Elgendy H; Ong J; Hollinger JO
    Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Treatment of a bone bridge by transplantation of mesenchymal stem cells and chondrocytes in a composite scaffold in pigs: experimental study].
    Plánka L; Nečas A; Crha M; Proks P; Vojtová L; Gál P
    Acta Chir Orthop Traumatol Cech; 2011; 78(6):528-36. PubMed ID: 22217406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds.
    Ren T; Ren J; Jia X; Pan K
    J Biomed Mater Res A; 2005 Sep; 74(4):562-9. PubMed ID: 16025492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold.
    Harada N; Watanabe Y; Sato K; Abe S; Yamanaka K; Sakai Y; Kaneko T; Matsushita T
    Biomaterials; 2014 Sep; 35(27):7800-10. PubMed ID: 24952976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.