These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 21876558)

  • 1. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis.
    Hu Y; Lu W; Chen G; Wang P; Chen Z; Zhou Y; Ogasawara M; Trachootham D; Feng L; Pelicano H; Chiao PJ; Keating MJ; Garcia-Manero G; Huang P
    Cell Res; 2012 Feb; 22(2):399-412. PubMed ID: 21876558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy.
    Lu W; Hu Y; Chen G; Chen Z; Zhang H; Wang F; Feng L; Pelicano H; Wang H; Keating MJ; Liu J; McKeehan W; Wang H; Luo Y; Huang P
    PLoS Biol; 2012; 10(5):e1001326. PubMed ID: 22589701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells.
    Baracca A; Chiaradonna F; Sgarbi G; Solaini G; Alberghina L; Lenaz G
    Biochim Biophys Acta; 2010 Feb; 1797(2):314-23. PubMed ID: 19931505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing.
    Song JH; An N; Chatterjee S; Kistner-Griffin E; Mahajan S; Mehrotra S; Kraft AS
    Oncogene; 2015 Jul; 34(28):3728-36. PubMed ID: 25241892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells.
    Rafikov R; Sun X; Rafikova O; Louise Meadows M; Desai AA; Khalpey Z; Yuan JX; Fineman JR; Black SM
    Redox Biol; 2015 Dec; 6():278-286. PubMed ID: 26298201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Nrf2 on tumour growth and drug sensitivity in oncogenic K-ras-transformed cells in vitro and in vivo.
    Shao J; Glorieux C; Liao J; Chen P; Lu W; Liang Z; Wen S; Hu Y; Huang P
    Free Radic Res; 2018 Jun; 52(6):661-671. PubMed ID: 29621903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial fragmentation, elevated mitochondrial superoxide and respiratory supercomplexes disassembly is connected with the tamoxifen-resistant phenotype of breast cancer cells.
    Tomková V; Sandoval-Acuña C; Torrealba N; Truksa J
    Free Radic Biol Med; 2019 Nov; 143():510-521. PubMed ID: 31494243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of NDUFAF1 in mediating K-Ras induced mitochondrial dysfunction by a proteomic screening approach.
    Wang P; Song M; Zeng ZL; Zhu CF; Lu WH; Yang J; Ma MZ; Huang AM; Hu Y; Huang P
    Oncotarget; 2015 Feb; 6(6):3947-62. PubMed ID: 25714130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation.
    Gough DJ; Corlett A; Schlessinger K; Wegrzyn J; Larner AC; Levy DE
    Science; 2009 Jun; 324(5935):1713-6. PubMed ID: 19556508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new mutation-independent approach to cancer therapy: Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis.
    Ozsvari B; Sotgia F; Lisanti MP
    Aging (Albany NY); 2017 Oct; 9(10):2098-2116. PubMed ID: 29080556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H
    Hughes MC; Ramos SV; Turnbull PC; Rebalka IA; Cao A; Monaco CMF; Varah NE; Edgett BA; Huber JS; Tadi P; Delfinis LJ; Schlattner U; Simpson JA; Hawke TJ; Perry CGR
    J Cachexia Sarcopenia Muscle; 2019 Jun; 10(3):643-661. PubMed ID: 30938481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propofol induces a metabolic switch to glycolysis and cell death in a mitochondrial electron transport chain-dependent manner.
    Sumi C; Okamoto A; Tanaka H; Nishi K; Kusunoki M; Shoji T; Uba T; Matsuo Y; Adachi T; Hayashi JI; Takenaga K; Hirota K
    PLoS One; 2018; 13(2):e0192796. PubMed ID: 29447230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation by different oncogenes relies on specific metabolic adaptations.
    Peruzzo P; Comelli M; Di Giorgio E; Franforte E; Mavelli I; Brancolini C
    Cell Cycle; 2016 Oct; 15(19):2656-2668. PubMed ID: 27485932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype.
    de Groof AJ; te Lindert MM; van Dommelen MM; Wu M; Willemse M; Smift AL; Winer M; Oerlemans F; Pluk H; Fransen JA; Wieringa B
    Mol Cancer; 2009 Jul; 8():54. PubMed ID: 19646236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MKP-1 Modulates Mitochondrial Transcription Factors, Oxidative Phosphorylation, and Glycolysis.
    Bauerfeld C; Talwar H; Zhang K; Liu Y; Samavati L
    Immunohorizons; 2020 May; 4(5):245-258. PubMed ID: 32414764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial dysfunction contributes to oncogene-induced senescence.
    Moiseeva O; Bourdeau V; Roux A; Deschênes-Simard X; Ferbeyre G
    Mol Cell Biol; 2009 Aug; 29(16):4495-507. PubMed ID: 19528227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus.
    Delavallée L; Mathiah N; Cabon L; Mazeraud A; Brunelle-Navas MN; Lerner LK; Tannoury M; Prola A; Moreno-Loshuertos R; Baritaud M; Vela L; Garbin K; Garnier D; Lemaire C; Langa-Vives F; Cohen-Salmon M; Fernández-Silva P; Chrétien F; Migeotte I; Susin SA
    Mol Metab; 2020 Oct; 40():101027. PubMed ID: 32480041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.
    Weinberg F; Hamanaka R; Wheaton WW; Weinberg S; Joseph J; Lopez M; Kalyanaraman B; Mutlu GM; Budinger GR; Chandel NS
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8788-93. PubMed ID: 20421486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depletion of mitochondrial inorganic polyphosphate (polyP) in mammalian cells causes metabolic shift from oxidative phosphorylation to glycolysis.
    Solesio ME; Xie L; McIntyre B; Ellenberger M; Mitaishvili E; Bhadra-Lobo S; Bettcher LF; Bazil JN; Raftery D; Jakob U; Pavlov EV
    Biochem J; 2021 Apr; 478(8):1631-1646. PubMed ID: 33843973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.