These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 21876664)
1. Evolutionary accessibility of mutational pathways. Franke J; Klözer A; de Visser JA; Krug J PLoS Comput Biol; 2011 Aug; 7(8):e1002134. PubMed ID: 21876664 [TBL] [Abstract][Full Text] [Related]
2. Beyond the Hypercube: Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks. Zagorski M; Burda Z; Waclaw B PLoS Comput Biol; 2016 Dec; 12(12):e1005218. PubMed ID: 27935934 [TBL] [Abstract][Full Text] [Related]
3. Predictability of evolution depends nonmonotonically on population size. Szendro IG; Franke J; de Visser JA; Krug J Proc Natl Acad Sci U S A; 2013 Jan; 110(2):571-6. PubMed ID: 23267075 [TBL] [Abstract][Full Text] [Related]
4. Recombination and mutational robustness in neutral fitness landscapes. Klug A; Park SC; Krug J PLoS Comput Biol; 2019 Aug; 15(8):e1006884. PubMed ID: 31415555 [TBL] [Abstract][Full Text] [Related]
5. Predictable properties of fitness landscapes induced by adaptational tradeoffs. Das SG; Direito SO; Waclaw B; Allen RJ; Krug J Elife; 2020 May; 9():. PubMed ID: 32423531 [TBL] [Abstract][Full Text] [Related]
6. The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. Moradigaravand D; Engelstädter J PLoS Comput Biol; 2012; 8(10):e1002735. PubMed ID: 23133344 [TBL] [Abstract][Full Text] [Related]
7. Empirical fitness landscapes and the predictability of evolution. de Visser JA; Krug J Nat Rev Genet; 2014 Jul; 15(7):480-90. PubMed ID: 24913663 [TBL] [Abstract][Full Text] [Related]
8. On the deformability of an empirical fitness landscape by microbial evolution. Bajić D; Vila JCC; Blount ZD; Sánchez A Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11286-11291. PubMed ID: 30322921 [TBL] [Abstract][Full Text] [Related]
9. Exploring the effect of sex on empirical fitness landscapes. de Visser JA; Park SC; Krug J Am Nat; 2009 Jul; 174 Suppl 1():S15-30. PubMed ID: 19456267 [TBL] [Abstract][Full Text] [Related]
10. Rational evolutionary design: the theory of in vitro protein evolution. Voigt CA; Kauffman S; Wang ZG Adv Protein Chem; 2000; 55():79-160. PubMed ID: 11050933 [TBL] [Abstract][Full Text] [Related]
11. Sampling Strategies for Experimentally Mapping Molecular Fitness Landscapes Using High-Throughput Methods. Chen SK; Liu J; Van Nynatten A; Tudor-Price BM; Chang BSW J Mol Evol; 2024 Aug; 92(4):402-414. PubMed ID: 38886207 [TBL] [Abstract][Full Text] [Related]
12. Quantifying the similarity of monotonic trajectories in rough and smooth fitness landscapes. Lobkovsky AE; Wolf YI; Koonin EV Mol Biosyst; 2013 Jul; 9(7):1627-31. PubMed ID: 23460358 [TBL] [Abstract][Full Text] [Related]
14. Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning. Rotrattanadumrong R; Yokobayashi Y Nat Commun; 2022 Aug; 13(1):4847. PubMed ID: 35977956 [TBL] [Abstract][Full Text] [Related]
15. Molecular Fitness Landscapes from High-Coverage Sequence Profiling. Blanco C; Janzen E; Pressman A; Saha R; Chen IA Annu Rev Biophys; 2019 May; 48():1-18. PubMed ID: 30601678 [TBL] [Abstract][Full Text] [Related]