These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 21877154)
1. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes. Prasad NK; Vindal V; Narayana SL; Ramakrishna V; Kunal SP; Srinivas M J Mol Model; 2012 May; 18(5):2013-9. PubMed ID: 21877154 [TBL] [Abstract][Full Text] [Related]
2. Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus. Orlikowska M; de J Rostro-Alanis M; Bujacz A; Hernández-Luna C; Rubio R; Parra R; Bujacz G Int J Biol Macromol; 2018 Feb; 107(Pt B):1629-1640. PubMed ID: 29055703 [TBL] [Abstract][Full Text] [Related]
3. A Pycnoporus sanguineus laccase for denim bleaching and its comparison with an enzymatic commercial formulation. Iracheta-Cárdenas MM; Rocha-Peña MA; Galán-Wong LJ; Arévalo-Niño K; Tovar-Herrera OE J Environ Manage; 2016 Jul; 177():93-100. PubMed ID: 27085152 [TBL] [Abstract][Full Text] [Related]
4. A mechanism for NaCl inhibition of Reactive Blue 19 decolorization and ABTS oxidation by laccase. Champagne PP; Nesheim ME; Ramsay JA Appl Microbiol Biotechnol; 2013 Jul; 97(14):6263-9. PubMed ID: 23129183 [TBL] [Abstract][Full Text] [Related]
5. High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications. Uzan E; Nousiainen P; Balland V; Sipila J; Piumi F; Navarro D; Asther M; Record E; Lomascolo A J Appl Microbiol; 2010 Jun; 108(6):2199-213. PubMed ID: 19968731 [TBL] [Abstract][Full Text] [Related]
6. Insights into Laccase Engineering from Molecular Simulations: Toward a Binding-Focused Strategy. Monza E; Lucas MF; Camarero S; Alejaldre LC; Martínez AT; Guallar V J Phys Chem Lett; 2015 Apr; 6(8):1447-53. PubMed ID: 26263150 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical characteristics of the decolorization of three dyes by laccase mediator system (LMS) with synthetic and natural mediators. Du Y; Ma H; Huang L; Pan Y; Huang J; Liu Y Chemosphere; 2020 Jan; 239():124779. PubMed ID: 31521934 [TBL] [Abstract][Full Text] [Related]
8. Laccase-mediated coupling of nonpolar chains for the hydrophobization of lignocellulose. Garcia-Ubasart J; Vidal T; Torres AL; Rojas OJ Biomacromolecules; 2013 May; 14(5):1637-44. PubMed ID: 23570533 [TBL] [Abstract][Full Text] [Related]
9. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization. Zimbardi AL; Camargo PF; Carli S; Aquino Neto S; Meleiro LP; Rosa JC; De Andrade AR; Jorge JA; Furriel RP Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27164083 [TBL] [Abstract][Full Text] [Related]
10. Reversible covalent immobilization of Trametes villosa laccase onto thiolsulfinate-agarose: An insoluble biocatalyst with potential for decoloring recalcitrant dyes. Gioia L; Rodríguez-Couto S; Menéndez Mdel P; Manta C; Ovsejevi K Biotechnol Appl Biochem; 2015; 62(4):502-13. PubMed ID: 25196324 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic Textile Dyes Decolorization by In vitro and In silico Studies. Ayla S; Kallubai M; Pallipati SD; Narasimha G Recent Pat Biotechnol; 2019; 13(4):268-276. PubMed ID: 31241023 [TBL] [Abstract][Full Text] [Related]
13. Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus. Daou M; Piumi F; Cullen D; Record E; Faulds CB Appl Environ Microbiol; 2016 Aug; 82(16):4867-75. PubMed ID: 27260365 [TBL] [Abstract][Full Text] [Related]
14. Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Srinivasan S; Sadasivam SK; Gunalan S; Shanmugam G; Kothandan G Environ Pollut; 2019 May; 248():599-608. PubMed ID: 30836241 [TBL] [Abstract][Full Text] [Related]
15. Biodecolorization and Ecotoxicity Abatement of Disperse Dye-Production Wastewater Treatment with Wang B; Chen Y; Guan J; Ding Y; He Y; Zhang X; Shukurov N; Romanholo Ferreira LF; Liu J; Zhu M Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805640 [TBL] [Abstract][Full Text] [Related]
16. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates. Galli C; Gentili P; Jolivalt C; Madzak C; Vadalà R Appl Microbiol Biotechnol; 2011 Jul; 91(1):123-31. PubMed ID: 21468703 [TBL] [Abstract][Full Text] [Related]
17. Laccase chloride inhibition reduction by an anthraquinonic substrate. Enaud E; Trovaslet M; Naveau F; Decristoforo A; Bizet S; Vanhulle S; Jolivalt C Enzyme Microb Technol; 2011 Dec; 49(6-7):517-25. PubMed ID: 22142726 [TBL] [Abstract][Full Text] [Related]
18. Molecular docking and molecular dynamics simulation approaches for evaluation of laccase-mediated biodegradation of various industrial dyes. Pande V; Joshi T; Pandey SC; Sati D; Mathpal S; Pande V; Chandra S; Samant M J Biomol Struct Dyn; 2022; 40(23):12461-12471. PubMed ID: 34459700 [TBL] [Abstract][Full Text] [Related]
19. Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching. Ravalason H; Herpoël-Gimbert I; Record E; Bertaud F; Grisel S; de Weert S; van den Hondel CA; Asther M; Petit-Conil M; Sigoillot JC J Biotechnol; 2009 Jul; 142(3-4):220-6. PubMed ID: 19414054 [TBL] [Abstract][Full Text] [Related]
20. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. Awasthi M; Jaiswal N; Singh S; Pandey VP; Dwivedi UN J Biomol Struct Dyn; 2015 Sep; 33(9):1835-49. PubMed ID: 25301391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]