BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 21877278)

  • 1. Construction of protein interaction networks based on the label-free quantitative proteomics.
    Sardiu ME; Washburn MP
    Methods Mol Biol; 2011; 781():71-85. PubMed ID: 21877278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Cartographers toolbox: building bigger and better human protein interaction networks.
    Sanderson CM
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):1-11. PubMed ID: 19282470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction proteomics.
    Monti M; OrrĂ¹ S; Pagnozzi D; Pucci P
    Biosci Rep; 2005; 25(1-2):45-56. PubMed ID: 16222419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative functional analysis of protein complexes on surfaces.
    Lee HJ; Yan Y; Marriott G; Corn RM
    J Physiol; 2005 Feb; 563(Pt 1):61-71. PubMed ID: 15613368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of mammalian protein complexes by lentiviral-based affinity purification and mass spectrometry.
    Ni Z; Olsen JB; Emili A; Greenblatt JF
    Methods Mol Biol; 2011; 781():31-45. PubMed ID: 21877275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing protein-protein interaction networks.
    Koh GC; Porras P; Aranda B; Hermjakob H; Orchard SE
    J Proteome Res; 2012 Apr; 11(4):2014-31. PubMed ID: 22385417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bait compatibility index: computational bait selection for interaction proteomics experiments.
    Saha S; Kaur P; Ewing RM
    J Proteome Res; 2010 Oct; 9(10):4972-81. PubMed ID: 20731387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T; Keating AE
    BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of clustering algorithms for protein complex and protein interaction network assembly.
    Sardiu ME; Florens L; Washburn MP
    J Proteome Res; 2009 Jun; 8(6):2944-52. PubMed ID: 19317493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic approach to identify chaperone pathway relationship from large-scale interaction networks.
    Gong Y; Zhang Z; Houry WA
    Methods Mol Biol; 2011; 787():189-203. PubMed ID: 21898237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization and analysis of the complexome network of Saccharomyces cerevisiae.
    Li SS; Xu K; Wilkins MR
    J Proteome Res; 2011 Oct; 10(10):4744-56. PubMed ID: 21842913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining Dense Overlapping Subgraphs in weighted protein-protein interaction networks.
    Lee AJ; Lin MC; Hsu CM
    Biosystems; 2011 Mar; 103(3):392-9. PubMed ID: 21095218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of core-attachment complexes based on maximal frequent patterns in protein-protein interaction networks.
    Yu L; Gao L; Kong C
    Proteomics; 2011 Oct; 11(19):3826-34. PubMed ID: 21761565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions.
    Schuldiner M; Collins SR; Weissman JS; Krogan NJ
    Methods; 2006 Dec; 40(4):344-52. PubMed ID: 17101447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features.
    Li ZC; Lai YH; Chen LL; Zhou X; Dai Z; Zou XY
    Anal Chim Acta; 2012 Mar; 718():32-41. PubMed ID: 22305895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the dynamics of protein interactions with quantitative mass spectrometry.
    Ramisetty SR; Washburn MP
    Crit Rev Biochem Mol Biol; 2011 Jun; 46(3):216-28. PubMed ID: 21438726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating high-throughput proteomics experiments into structural biology pipelines: identification of the low-hanging fruits.
    Pache RA; Aloy P
    Proteomics; 2008 May; 8(10):1959-64. PubMed ID: 18491310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping physical interactions within chromatin by proteomic approaches.
    Lambert JP; Pawson T; Gingras AC
    Proteomics; 2012 May; 12(10):1609-22. PubMed ID: 22611019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Puzzle of protein complexes in vivo: a present and future challenge for functional proteomics.
    Monti M; Cozzolino M; Cozzolino F; Vitiello G; Tedesco R; Flagiello A; Pucci P
    Expert Rev Proteomics; 2009 Apr; 6(2):159-69. PubMed ID: 19385943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferring network topological knowledge for predicting protein-protein interactions.
    Xu Q; Xiang EW; Yang Q
    Proteomics; 2011 Oct; 11(19):3818-25. PubMed ID: 21770035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.