These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21877708)

  • 1. Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures.
    Dayeh SA; Wang J; Li N; Huang JY; Gin AV; Picraux ST
    Nano Lett; 2011 Oct; 11(10):4200-6. PubMed ID: 21877708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous, Defect-Free Kinking via Capillary Instability during Vapor-Liquid-Solid Nanowire Growth.
    Li Y; Wang Y; Ryu S; Marshall AF; Cai W; McIntyre PC
    Nano Lett; 2016 Mar; 16(3):1713-8. PubMed ID: 26837774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Morphology in Epitaxial Silicon Nanowires: The Role of Gold, Surface Chemistry, and Phosphorus Doping.
    Kim S; Hill DJ; Pinion CW; Christesen JD; McBride JR; Cahoon JF
    ACS Nano; 2017 May; 11(5):4453-4462. PubMed ID: 28323413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Catalytic Growth of Elementary Semiconductor Nanowires with Controlled Morphology and Crystallographic Orientation.
    Jang HS; Kim TH; Kim BG; Hou B; Lee IH; Jung SH; Lee JH; Cha S; Yang CW; Kim BS; Whang D
    Nano Lett; 2021 Dec; 21(23):9909-9915. PubMed ID: 34843258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure.
    Cao YY; Ouyang G; Wang CX; Yang GW
    Nano Lett; 2013 Feb; 13(2):436-43. PubMed ID: 23297740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-controlled VLS growth of planar nanowires: yield and mechanism.
    Zhang C; Miao X; Mohseni PK; Choi W; Li X
    Nano Lett; 2014 Dec; 14(12):6836-41. PubMed ID: 25343224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst.
    Christesen JD; Pinion CW; Zhang X; McBride JR; Cahoon JF
    ACS Nano; 2014 Nov; 8(11):11790-8. PubMed ID: 25363730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vapor-liquid-solid growth of endotaxial semiconductor nanowires.
    Li S; Huang X; Liu Q; Cao X; Huo F; Zhang H; Gan CL
    Nano Lett; 2012 Nov; 12(11):5565-70. PubMed ID: 23066984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.
    Tang W; Picraux ST; Huang JY; Liu X; Tu KN; Dayeh SA
    Nano Lett; 2013; 13(12):6009-15. PubMed ID: 24274698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures.
    Lin YC; Kim D; Li Z; Nguyen BM; Li N; Zhang S; Yoo J
    Nanoscale; 2017 Jan; 9(3):1213-1220. PubMed ID: 28050613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Rotational Twin Boundaries and Lattice Mismatch on III-V Nanowire Growth.
    Steidl M; Koppka C; Winterfeld L; Peh K; Galiana B; Supplie O; Kleinschmidt P; Runge E; Hannappel T
    ACS Nano; 2017 Sep; 11(9):8679-8689. PubMed ID: 28881138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.
    Yang ZX; Liu L; Yip S; Li D; Shen L; Zhou Z; Han N; Hung TF; Pun EY; Wu X; Song A; Ho JC
    ACS Nano; 2017 Apr; 11(4):4237-4246. PubMed ID: 28355076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guiding vapor-liquid-solid nanowire growth using SiO2.
    Quitoriano NJ; Wu W; Kamins TI
    Nanotechnology; 2009 Apr; 20(14):145303. PubMed ID: 19420522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold-catalyzed vapor-liquid-solid germanium-nanowire nucleation on porous silicon.
    Koto M; Marshall AF; Goldthorpe IA; McIntyre PC
    Small; 2010 May; 6(9):1032-7. PubMed ID: 20411571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertically Aligned Ge Nanowires on Flexible Plastic Films Synthesized by (111)-Oriented Ge Seeded Vapor-Liquid-Solid Growth.
    Toko K; Nakata M; Jevasuwan W; Fukata N; Suemasu T
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18120-4. PubMed ID: 26230716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarity Control in Growing Highly Ga-Doped ZnO Nanowires with the Vapor-Liquid-Solid Process.
    Yao YF; Chou KP; Lin HH; Chen CC; Kiang YW; Yang CC
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40764-40772. PubMed ID: 30398848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of an AlN seeding layer on nucleation of self-assembled GaN nanowires on silicon substrates.
    Wu Y; Liu B; Li Z; Tao T; Xie Z; Wang K; Xiu X; Chen D; Lu H; Zhang R; Zheng Y
    Nanotechnology; 2020 Jan; 31(4):045604. PubMed ID: 31578003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of silicon-germanium axial nanowire heterostructures in a solvent vapor growth system using indium and tin catalysts.
    Mullane E; Geaney H; Ryan KM
    Phys Chem Chem Phys; 2015 Mar; 17(10):6919-24. PubMed ID: 25676188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation.
    Lee HY; Shen TH; Hu CY; Tsai YY; Wen CY
    Nano Lett; 2017 Dec; 17(12):7494-7499. PubMed ID: 29185770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.