These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21877807)

  • 1. Study on the applicability of instrumental measures for black-box evaluation of static feedback control in hearing aids.
    Madhu N; Wouters J; Spriet A; Bisitz T; Hohmann V; Moonen M
    J Acoust Soc Am; 2011 Aug; 130(2):933-47. PubMed ID: 21877807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of feedback reduction techniques in hearing aids based on physical performance measures.
    Spriet A; Moonen M; Wouters J
    J Acoust Soc Am; 2010 Sep; 128(3):1245-61. PubMed ID: 20815460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting the invariant model from the feedback paths of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2011 Jul; 130(1):350-63. PubMed ID: 21786904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wind noise in hearing aids with directional and omnidirectional microphones: Polar characteristics of custom-made hearing aids.
    Chung K; McKibben N; Mongeau L
    J Acoust Soc Am; 2010 Apr; 127(4):2529-42. PubMed ID: 20370035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wind noise in hearing aids: I. Effect of wide dynamic range compression and modulation-based noise reduction.
    Chung K
    Int J Audiol; 2012 Jan; 51(1):16-28. PubMed ID: 22107447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of virtual sound sources with bilateral hearing aids in realistic acoustical scenes.
    Mueller MF; Kegel A; Schimmel SM; Dillier N; Hofbauer M
    J Acoust Soc Am; 2012 Jun; 131(6):4732-42. PubMed ID: 22712946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approximated affine projection algorithm for feedback cancellation in hearing aids.
    Lee S; Kim IY; Park YC
    Comput Methods Programs Biomed; 2007 Sep; 87(3):254-61. PubMed ID: 17644214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a signal cancellation technique involving impulse response to assess directivity of hearing aids.
    Wu YH; Bentler RA
    J Acoust Soc Am; 2009 Dec; 126(6):3214-26. PubMed ID: 20000935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a reflection model for modeling the dynamic feedback path of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2010 Mar; 127(3):1458-68. PubMed ID: 20329846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a signal cancellation technique to assess adaptive directivity of hearing aids.
    Wu YH; Bentler RA
    J Acoust Soc Am; 2007 Jul; 122(1):496-511. PubMed ID: 17614507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna.
    Van den Bogaert T; Carette E; Wouters J
    Int J Audiol; 2011 Mar; 50(3):164-76. PubMed ID: 21208034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVD-based optimal filtering for noise reduction in dual microphone hearing aids: a real time implementation and perceptual evaluation.
    Maj JB; Royackers L; Moonen M; Wouters J
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1563-73. PubMed ID: 16189969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to measure hearing aid directivity index and polar pattern in small and reverberant enclosures.
    Wu YH; Bentler RA
    Int J Audiol; 2011 Jun; 50(6):405-16. PubMed ID: 21309640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal measurement of acoustic feedback paths in hearing aids.
    Sankowsky-Rothe T; Blau M; Schepker H; Doclo S
    J Acoust Soc Am; 2015 Oct; 138(4):EL399-404. PubMed ID: 26520351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beamforming with a circular microphone array for localization of environmental noise sources.
    Tiana-Roig E; Jacobsen F; Grande EF
    J Acoust Soc Am; 2010 Dec; 128(6):3535-42. PubMed ID: 21218886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and performance evaluation of a broadband three dimensional acoustic intensity measuring system.
    Miah KH; Hixon EL
    J Acoust Soc Am; 2010 Apr; 127(4):2338-46. PubMed ID: 20370016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive environment classification system for hearing aids.
    Lamarche L; Giguère C; Gueaieb W; Aboulnasr T; Othman H
    J Acoust Soc Am; 2010 May; 127(5):3124-35. PubMed ID: 21117761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroacoustic evaluation of frequency-modulated receivers interfaced with personal hearing aids.
    Schafer EC; Thibodeau LM; Whalen HS; Overson GJ
    Lang Speech Hear Serv Sch; 2007 Oct; 38(4):315-26. PubMed ID: 17890512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Verifying the attenuation of earplugs in situ: method validation using artificial head and numerical simulations.
    Bockstael A; de Greve B; Van Renterghem T; Botteldooren D; D'Haenens W; Keppler H; Maes L; Philips B; Swinnen F; Vinck B
    J Acoust Soc Am; 2008 Aug; 124(2):973-81. PubMed ID: 18681589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A time-domain digital simulation of hearing aid response.
    Kates JM
    J Rehabil Res Dev; 1990; 27(3):279-94. PubMed ID: 2401958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.