These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 21877818)

  • 1. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2011 Aug; 130(2):1060-70. PubMed ID: 21877818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on Rayleigh wave dispersion in bone according to Mindlin's Form II gradient elasticity.
    Vavva MG; Gergidis LN; Protopappas VC; Charalambopoulos A; Polyzos D; Fotiadis DI
    J Acoust Soc Am; 2014 May; 135(5):3117-26. PubMed ID: 24926506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of bone's microstructural effects on Rayleigh wave propagation.
    Vavva MG; Gergidis LN; Charalambopoulos A; Protopappas VC; Polyzos D; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2885-8. PubMed ID: 23366527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BEM simulations of Rayleigh wave propagation in media with microstructural effects: Application to long bones.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Polyzos D; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3535-8. PubMed ID: 21097039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone.
    Vavva MG; Protopappas VC; Gergidis LN; Charalambopoulos A; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2009 May; 125(5):3414-27. PubMed ID: 19425680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concrete wave dispersion interpretation through Mindlin's strain gradient elastic theory.
    Iliopoulos SN; Malm F; Grosse CU; Aggelis DG; Polyzos D
    J Acoust Soc Am; 2017 Jul; 142(1):EL89. PubMed ID: 28764453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new Rayleigh-like wave in guided propagation of antiplane waves in couple stress materials.
    Nobili A; Radi E; Signorini C
    Proc Math Phys Eng Sci; 2020 Mar; 476(2235):20190822. PubMed ID: 32269492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Fotiadis DI; Malizos KN
    Ultrasound Med Biol; 2006 May; 32(5):693-708. PubMed ID: 16677929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity analysis of ultrasonic guided waves propagating in trilayered bone models: a numerical study.
    Tran TNHT; Le LH; Sacchi MD; Nguyen VH
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1269-1279. PubMed ID: 29777322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.
    Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H
    Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves.
    Mézière F; Muller M; Dobigny B; Bossy E; Derode A
    J Acoust Soc Am; 2013 Feb; 133(2):643-52. PubMed ID: 23363084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of transient wave propagation in a heterogeneous solid layer coupled with fluid: application to long bones.
    Naili S; Nguyen VH; Vu MB; Desceliers C; Soize C
    J Acoust Soc Am; 2015 Feb; 137(2):668-78. PubMed ID: 25698002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive assessment of human jawbone using ultrasonic guided waves.
    Mahmoud A; Cortes D; Abaza A; Ammar H; Hazey M; Ngan P; Crout R; Mukdadi O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1316-27. PubMed ID: 18599419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):738-47. PubMed ID: 19406702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.