These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21877818)

  • 21. Numerical Simulation and Non-Destructive Characterization of Material Property and Defect Analysis of Cortical Bone Using Laser Ultrasound Techniques.
    Yang CH; Jeyaprakash N; Tseng YJ
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3917-3932. PubMed ID: 34325509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupled wedge waves.
    Abell BC; Pyrak-Nolte LJ
    J Acoust Soc Am; 2013 Nov; 134(5):3551-60. PubMed ID: 24180766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.
    Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of long-range ultrasonic guided wave characteristics in cortical bone by modelling.
    Guha A; Aynardi M; Shokouhi P; Lissenden CJ
    Ultrasonics; 2021 Jul; 114():106407. PubMed ID: 33667952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A multiscale poromicromechanical approach to wave propagation and attenuation in bone.
    Morin C; Hellmich C
    Ultrasonics; 2014 Jul; 54(5):1251-69. PubMed ID: 24457030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic guided waves in bone.
    Moilanen P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1277-86. PubMed ID: 18599415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear guided wave propagation in prestressed plates.
    Pau A; Lanza di Scalea F
    J Acoust Soc Am; 2015 Mar; 137(3):1529-40. PubMed ID: 25786963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants.
    Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study.
    Minonzio JG; Bochud N; Vallet Q; Bala Y; Ramiandrisoa D; Follet H; Mitton D; Laugier P
    Bone; 2018 Nov; 116():111-119. PubMed ID: 30056165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
    Xu K; Liu C; Ta D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1930-3. PubMed ID: 24110091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.
    Wang B; Qian Z; Li N; Sarraf H
    Ultrasonics; 2016 Jan; 64():62-8. PubMed ID: 26254981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guided ultrasonic waves in long bones: modelling, experiment and in vivo application.
    Nicholson PH; Moilanen P; Kärkkäinen T; Timonen J; Cheng S
    Physiol Meas; 2002 Nov; 23(4):755-68. PubMed ID: 12450274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the impact of soft tissue on axial transmission measurements of ultrasonic guided waves in human radius.
    Moilanen P; Talmant M; Kilappa V; Nicholson P; Cheng S; Timonen J; Laugier P
    J Acoust Soc Am; 2008 Oct; 124(4):2364-73. PubMed ID: 19062874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustoelastic Lamb wave propagation in biaxially stressed plates.
    Gandhi N; Michaels JE; Lee SJ
    J Acoust Soc Am; 2012 Sep; 132(3):1284-93. PubMed ID: 22978856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone.
    Anderson CC; Marutyan KR; Holland MR; Wear KA; Miller JG
    J Acoust Soc Am; 2008 Sep; 124(3):1781-9. PubMed ID: 19045668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Normal waves in elastic bars of rectangular cross section.
    Krushynska AA; Meleshko VV
    J Acoust Soc Am; 2011 Mar; 129(3):1324-35. PubMed ID: 21428496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring the wavenumber of guided modes in waveguides with linearly varying thickness.
    Moreau L; Minonzio JG; Talmant M; Laugier P
    J Acoust Soc Am; 2014 May; 135(5):2614-24. PubMed ID: 24815245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments.
    Moilanen P; Talmant M; Nicholson PH; Cheng S; Timonen J; Laugier P
    J Acoust Soc Am; 2007 Oct; 122(4):2439-45. PubMed ID: 17902878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.
    Gilbert RP; Guyenne P; Li J
    Comput Biol Med; 2014 Feb; 45():143-56. PubMed ID: 24480174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.