These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21877923)

  • 1. Electronic health record use to classify patients with newly diagnosed versus preexisting type 2 diabetes: infrastructure for comparative effectiveness research and population health management.
    Kudyakov R; Bowen J; Ewen E; West SL; Daoud Y; Fleming N; Masica A
    Popul Health Manag; 2012 Feb; 15(1):3-11. PubMed ID: 21877923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validating an ontology-based algorithm to identify patients with type 2 diabetes mellitus in electronic health records.
    Rahimi A; Liaw ST; Taggart J; Ray P; Yu H
    Int J Med Inform; 2014 Oct; 83(10):768-78. PubMed ID: 25011429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges in using electronic health record data for CER: experience of 4 learning organizations and solutions applied.
    Bayley KB; Belnap T; Savitz L; Masica AL; Shah N; Fleming NS
    Med Care; 2013 Aug; 51(8 Suppl 3):S80-6. PubMed ID: 23774512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a computable phenotype for identification of patients with diabetes within PCORnet: The Patient-Centered Clinical Research Network.
    Wiese AD; Roumie CL; Buse JB; Guzman H; Bradford R; Zalimeni E; Knoepp P; Morris HL; Donahoo WT; Fanous N; Epstein BF; Katalenich BL; Ayala SG; Cook MM; Worley KJ; Bachmann KN; Grijalva CG; Rothman RL; Chakkalakal RJ
    Pharmacoepidemiol Drug Saf; 2019 May; 28(5):632-639. PubMed ID: 30680840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CER Hub: An informatics platform for conducting comparative effectiveness research using multi-institutional, heterogeneous, electronic clinical data.
    Hazlehurst BL; Kurtz SE; Masica A; Stevens VJ; McBurnie MA; Puro JE; Vijayadeva V; Au DH; Brannon ED; Sittig DF
    Int J Med Inform; 2015 Oct; 84(10):763-73. PubMed ID: 26138036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating electronic health record information to support integrated care: practical application of ontologies to improve the accuracy of diabetes disease registers.
    Liaw ST; Taggart J; Yu H; de Lusignan S; Kuziemsky C; Hayen A
    J Biomed Inform; 2014 Dec; 52():364-72. PubMed ID: 25089026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study.
    Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS
    J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating quality of care for patients with type 2 diabetes using electronic health record information in Mexico.
    Pérez-Cuevas R; Doubova SV; Suarez-Ortega M; Law M; Pande AH; Escobedo J; Espinosa-Larrañaga F; Ross-Degnan D; Wagner AK
    BMC Med Inform Decis Mak; 2012 Jun; 12():50. PubMed ID: 22672471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An algorithm to improve diagnostic accuracy in diabetes in computerised problem orientated medical records (POMR) compared with an established algorithm developed in episode orientated records (EOMR).
    de Lusignan S; Liaw ST; Dedman D; Khunti K; Sadek K; Jones S
    J Innov Health Inform; 2015 Jun; 22(2):255-64. PubMed ID: 26245239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of algorithms to identify newly diagnosed type 1 and type 2 diabetes in pediatric population using electronic medical records and claims data.
    Teltsch DY; Fazeli Farsani S; Swain RS; Kaspers S; Huse S; Cristaldi C; Nordstrom BL; Brodovicz KG
    Pharmacoepidemiol Drug Saf; 2019 Feb; 28(2):234-243. PubMed ID: 30677205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data.
    Klompas M; Eggleston E; McVetta J; Lazarus R; Li L; Platt R
    Diabetes Care; 2013 Apr; 36(4):914-21. PubMed ID: 23193215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practice-based research network focused on comparative effectiveness research in type 2 diabetes management.
    Anderson JE; Rhinehart AS; Reid TS; Cuddihy RM; Vlajnic A; Dalal MR; Gemmen E; Johnstone B; Abbaszadeh B; Reed J; Sheller J; Stewart J; Mozaffari E;
    Postgrad Med; 2013 May; 125(3):172-80. PubMed ID: 23748518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Claims-based studies of oral glucose-lowering medications can achieve balance in critical clinical variables only observed in electronic health records.
    Patorno E; Gopalakrishnan C; Franklin JM; Brodovicz KG; Masso-Gonzalez E; Bartels DB; Liu J; Schneeweiss S
    Diabetes Obes Metab; 2018 Apr; 20(4):974-984. PubMed ID: 29206336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of an Electronic Health Record System With a Disease Management Program and Health Care Treatment Costs for Danish Patients With Type 2 Diabetes.
    Pulleyblank R; Mellace G; Olsen KR
    JAMA Netw Open; 2020 May; 3(5):e206603. PubMed ID: 32453386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of administrative and electronic health record data for development of automated algorithms for childhood diabetes case ascertainment and type classification: the SEARCH for Diabetes in Youth Study.
    Zhong VW; Pfaff ER; Beavers DP; Thomas J; Jaacks LM; Bowlby DA; Carey TS; Lawrence JM; Dabelea D; Hamman RF; Pihoker C; Saydah SH; Mayer-Davis EJ;
    Pediatr Diabetes; 2014 Dec; 15(8):573-84. PubMed ID: 24913103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Longitudinal Epidemiologic Assessment of Diabetes Risk (LEADR): Unique 1.4 M patient Electronic Health Record cohort.
    Fishbein HA; Birch RJ; Mathew SM; Sawyer HL; Pulver G; Poling J; Kaelber D; Mardon R; Johnson MC; Pace W; Umbel KD; Zhang X; Siegel KR; Imperatore G; Shrestha S; Proia K; Cheng Y; McKeever Bullard K; Gregg EW; Rolka D; Pavkov ME
    Healthc (Amst); 2020 Dec; 8(4):100458. PubMed ID: 33011645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Out-of-system Care and Recording of Patient Characteristics Critical for Comparative Effectiveness Research.
    Lin KJ; Glynn RJ; Singer DE; Murphy SN; Lii J; Schneeweiss S
    Epidemiology; 2018 May; 29(3):356-363. PubMed ID: 29283893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agreement and validity of electronic health record prescribing data relative to pharmacy claims data: A validation study from a US electronic health record database.
    Rowan CG; Flory J; Gerhard T; Cuddeback JK; Stempniewicz N; Lewis JD; Hennessy S
    Pharmacoepidemiol Drug Saf; 2017 Aug; 26(8):963-972. PubMed ID: 28608510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of an electronic health record operating room management system in ophthalmology on documentation time, surgical volume, and staffing.
    Sanders DS; Read-Brown S; Tu DC; Lambert WE; Choi D; Almario BM; Yackel TR; Brown AS; Chiang MF
    JAMA Ophthalmol; 2014 May; 132(5):586-92. PubMed ID: 24676217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.