These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 21878486)

  • 21. Specific role of the posterior dorsal hippocampus-prefrontal cortex in short-term working memory.
    Izaki Y; Takita M; Akema T
    Eur J Neurosci; 2008 Jun; 27(11):3029-34. PubMed ID: 18540879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats.
    Del Arco A; Segovia G; Garrido P; de Blas M; Mora F
    Behav Brain Res; 2007 Jan; 176(2):267-73. PubMed ID: 17097747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical stress differs from psychosocial stress in the pattern and time-course of behavioral responses, serum corticosterone and expression of plasticity-related genes in the rat.
    Kavushansky A; Ben-Shachar D; Richter-Levin G; Klein E
    Stress; 2009 Sep; 12(5):412-25. PubMed ID: 19929444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Divergent effects of repeated restraint versus chronic variable stress on prefrontal cortical immune status after LPS injection.
    Smith BL; Schmeltzer SN; Packard BA; Sah R; Herman JP
    Brain Behav Immun; 2016 Oct; 57():263-270. PubMed ID: 27177449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engagement in a non-escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress.
    Berridge CW; Mitton E; Clark W; Roth RH
    Synapse; 1999 Jun; 32(3):187-97. PubMed ID: 10340629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antidepressants reverse the attenuation of the neurotrophic MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is associated with GluA1 phosphorylation.
    Qi H; Mailliet F; Spedding M; Rocher C; Zhang X; Delagrange P; McEwen B; Jay TM; Svenningsson P
    Neuropharmacology; 2009 Jan; 56(1):37-46. PubMed ID: 18657555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Persistent depressive state after chronic stress in rats is accompanied by HPA axis dysregulation and reduced prefrontal dopaminergic neurotransmission.
    Mizoguchi K; Shoji H; Ikeda R; Tanaka Y; Tabira T
    Pharmacol Biochem Behav; 2008 Nov; 91(1):170-5. PubMed ID: 18675292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effects of chronic multiple stress on learning and memory and the expression and phosphorylation of cerebral ERK of rats].
    Zheng G; Luo WJ; Chen YM; Liu MC; Ma JL; Chen JY
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2011 Feb; 27(1):33-6. PubMed ID: 21560335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental and stress-related changes of neurotrophic factor gene expression in an animal model of schizophrenia.
    Molteni R; Lipska BK; Weinberger DR; Racagni G; Riva MA
    Mol Psychiatry; 2001 May; 6(3):285-92. PubMed ID: 11326296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress Degrades Prefrontal Cortex Neuronal Coding of Goal-Directed Behavior.
    Devilbiss DM; Spencer RC; Berridge CW
    Cereb Cortex; 2017 May; 27(5):2970-2983. PubMed ID: 27226444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repeated social defeat selectively increases δFosB expression and histone H3 acetylation in the infralimbic medial prefrontal cortex.
    Hinwood M; Tynan RJ; Day TA; Walker FR
    Cereb Cortex; 2011 Feb; 21(2):262-71. PubMed ID: 20513656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential effects of mild repeated restraint stress on behaviors and GABA(A) receptors in male and female rats.
    Chadda R; Devaud LL
    Pharmacol Biochem Behav; 2005 Aug; 81(4):854-63. PubMed ID: 16039700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chronic stress impairs prefrontal cortex-dependent response inhibition and spatial working memory.
    Mika A; Mazur GJ; Hoffman AN; Talboom JS; Bimonte-Nelson HA; Sanabria F; Conrad CD
    Behav Neurosci; 2012 Oct; 126(5):605-19. PubMed ID: 22905921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex.
    Radley JJ; Rocher AB; Miller M; Janssen WG; Liston C; Hof PR; McEwen BS; Morrison JH
    Cereb Cortex; 2006 Mar; 16(3):313-20. PubMed ID: 15901656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sex-dependent effects of chronic unpredictable stress in the water maze.
    McFadden LM; Paris JJ; Mitzelfelt MS; McDonough S; Frye CA; Matuszewich L
    Physiol Behav; 2011 Mar; 102(3-4):266-75. PubMed ID: 21056052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emergence of spatial impairment in rats following specific cholinergic depletion of the medial septum combined with chronic stress.
    Craig LA; Hong NS; Kopp J; McDonald RJ
    Eur J Neurosci; 2008 May; 27(9):2262-71. PubMed ID: 18445217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microglia in the developing prefrontal cortex of rats show dynamic changes following neonatal disconnection of the ventral hippocampus.
    Hui CW; Bhardwaj SK; Sharma K; Joseph AT; Bisht K; Picard K; Tremblay MÈ; Srivastava LK
    Neuropharmacology; 2019 Mar; 146():264-275. PubMed ID: 30537477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential microglial activation between acute stress and lipopolysaccharide treatment.
    Sugama S; Takenouchi T; Fujita M; Conti B; Hashimoto M
    J Neuroimmunol; 2009 Feb; 207(1-2):24-31. PubMed ID: 19111355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex.
    Bollinger JL; Bergeon Burns CM; Wellman CL
    Brain Behav Immun; 2016 Feb; 52():88-97. PubMed ID: 26441134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18.
    Sugama S; Fujita M; Hashimoto M; Conti B
    Neuroscience; 2007 May; 146(3):1388-99. PubMed ID: 17433555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.