These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 21879116)

  • 1. Li ion battery materials with core-shell nanostructures.
    Su L; Jing Y; Zhou Z
    Nanoscale; 2011 Oct; 3(10):3967-83. PubMed ID: 21879116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-nanotube-encapsulated FeF₂ nanorods for high-performance lithium-ion cathode materials.
    Zhou J; Zhang D; Zhang X; Song H; Chen X
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21223-9. PubMed ID: 25399691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the performances of Li-ion batteries by carbon-coating: present and future.
    Li H; Zhou H
    Chem Commun (Camb); 2012 Jan; 48(9):1201-17. PubMed ID: 22125795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks.
    Xue DJ; Xin S; Yan Y; Jiang KC; Yin YX; Guo YG; Wan LJ
    J Am Chem Soc; 2012 Feb; 134(5):2512-5. PubMed ID: 22260540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designed Functional Systems for High-Performance Lithium-Ion Batteries Anode: From Solid to Hollow, and to Core-Shell NiCo2O4 Nanoparticles Encapsulated in Ultrathin Carbon Nanosheets.
    Peng L; Zhang H; Fang L; Bai Y; Wang Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4745-53. PubMed ID: 26835912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability.
    Asakura D; Li CH; Mizuno Y; Okubo M; Zhou H; Talham DR
    J Am Chem Soc; 2013 Feb; 135(7):2793-9. PubMed ID: 23391305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-Shell Nanocomposites for Improving the Structural Stability of Li-Rich Layered Oxide Cathode Materials for Li-Ion Batteries.
    Longo RC; Liang C; Kong F; Cho K
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19226-19234. PubMed ID: 29745224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries.
    Chen Y; Qian J; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3753-8. PubMed ID: 22757774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries.
    Li X; Xiong S; Li J; Liang X; Wang J; Bai J; Qian Y
    Chemistry; 2013 Aug; 19(34):11310-9. PubMed ID: 23843271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries.
    Su L; Zhou Z; Ren M
    Chem Commun (Camb); 2010 Apr; 46(15):2590-2. PubMed ID: 20449317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of graphene-encapsulated porous carbon-metal oxide composites as anode materials for lithium-ion batteries.
    Tao S; Yue W; Zhong M; Chen Z; Ren Y
    ACS Appl Mater Interfaces; 2014 May; 6(9):6332-9. PubMed ID: 24766556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material.
    Gao P; Fu J; Yang J; Lv R; Wang J; Nuli Y; Tang X
    Phys Chem Chem Phys; 2009 Dec; 11(47):11101-5. PubMed ID: 20024376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery.
    Huang H; Feng T; Gan Y; Fang M; Xia Y; Liang C; Tao X; Zhang W
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11842-8. PubMed ID: 25989321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General strategy for designing core-shell nanostructured materials for high-power lithium ion batteries.
    Shen L; Li H; Uchaker E; Zhang X; Cao G
    Nano Lett; 2012 Nov; 12(11):5673-8. PubMed ID: 23092272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes.
    Xue XY; He B; Yuan S; Xing LL; Chen ZH; Ma CH
    Nanotechnology; 2011 Sep; 22(39):395702. PubMed ID: 21891841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.