BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21879563)

  • 1. Remediation of soils contaminated with chromium using citric and hydrochloric acids: the role of chromium fractionation in chromium leaching.
    Cheng SF; Huang CY; Tu YT
    Environ Technol; 2011; 32(7-8):879-89. PubMed ID: 21879563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Chromium from a Contaminated Soil Using Oxalic Acid, Citric Acid, and Hydrochloric Acid: Dynamics, Mechanisms, and Concomitant Removal of Non-Targeted Metals.
    Sun Y; Guan F; Yang W; Wang AF
    Int J Environ Res Public Health; 2019 Aug; 16(15):. PubMed ID: 31382525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid.
    Jean-Soro L; Bordas F; Bollinger JC
    Environ Pollut; 2012 May; 164():175-81. PubMed ID: 22361057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.
    Meng F; Xue H; Wang Y; Zheng B; Wang J
    Environ Technol; 2018 Feb; 39(3):356-362. PubMed ID: 28278094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids.
    Pérez-Esteban J; Escolástico C; Moliner A; Masaguer A
    Chemosphere; 2013 Jan; 90(2):276-83. PubMed ID: 22854018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents.
    Taghipour M; Jalali M
    Chemosphere; 2016 Jul; 155():395-404. PubMed ID: 27139119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Feasibility of washing as a remediation technology for the heavy metals-polluted soils left by chemical plant].
    Liu L; Hu SP; Chen YX; Li H
    Ying Yong Sheng Tai Xue Bao; 2010 Jun; 21(6):1537-41. PubMed ID: 20873632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil.
    Isoyama M; Wada S
    J Hazard Mater; 2007 May; 143(3):636-42. PubMed ID: 17267106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction.
    Ko I; Chang YY; Lee CH; Kim KW
    J Hazard Mater; 2005 Dec; 127(1-3):1-13. PubMed ID: 16122872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.
    Gitipour S; Ahmadi S; Madadian E; Ardestani M
    Environ Technol; 2016; 37(1):145-51. PubMed ID: 26599728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation.
    Wang D; Li G; Qin S; Tao W; Gong S; Wang J
    Ecotoxicol Environ Saf; 2021 Jan; 208():111734. PubMed ID: 33396063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil.
    Xu J; Kleja DB; Biester H; Lagerkvist A; Kumpiene J
    Chemosphere; 2014 Aug; 109():99-105. PubMed ID: 24873713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of extraction procedures for removing lead from contaminated soil.
    Tawinteung N; Parkpian P; DeLaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(2):385-407. PubMed ID: 15717783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of metal polluted hotspot areas through enhanced soil washing--evaluation of leaching methods.
    Fedje KK; Yillin L; Strömvall AM
    J Environ Manage; 2013 Oct; 128():489-96. PubMed ID: 23811538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Remediation of chromate contaminated soils by combined technology of electrokinetic and iron PRB].
    Zhang RH; Sun HW
    Huan Jing Ke Xue; 2007 May; 28(5):1131-6. PubMed ID: 17633191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].
    Liu X; Wang JT; Zhang M; Wang L; Yang YT
    Huan Jing Ke Xue; 2013 Apr; 34(4):1590-7. PubMed ID: 23798147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility and fractionation of arsenic, chromium and copper in thermally treated soil.
    Nordmark D; Kumpiene J; Andreas L; Lagerkvist A
    Waste Manag Res; 2011 Jan; 29(1):3-12. PubMed ID: 20880937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.
    Udovic M; Lestan D
    Chemosphere; 2012 Jul; 88(6):718-24. PubMed ID: 22591846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.