These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21879729)

  • 21. Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy.
    Fu M; Qian L; Long H; Wang K; Lu P; Rakovich YP; Hetsch F; Susha AS; Rogach AL
    Nanoscale; 2014 Aug; 6(15):9192-7. PubMed ID: 24981883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size dependence of band-gaps in a one-dimensional plasmonic crystal.
    Watanabe H; Honda M; Yamamoto N
    Opt Express; 2014 Mar; 22(5):5155-65. PubMed ID: 24663855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping Local Surface Plasmon Modes in a Nanoplasmonic Trimer Using Cathodoluminescence in the Scanning Electron Microscope.
    Liu ACY; Lloyd J; Coenen T; Gómez DE
    Microsc Microanal; 2020 Aug; 26(4):808-813. PubMed ID: 32366354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confinement of Surface Plasmon Polaritons by Heterostructures of Plasmonic Crystals.
    Saito H; Mizuma S; Yamamoto N
    Nano Lett; 2015 Oct; 15(10):6789-93. PubMed ID: 26414000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem.
    Yi Z; Li X; Xu X; Chen X; Ye X; Yi Y; Duan T; Tang Y; Liu J; Yi Y
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30044425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-photon mapping of localized field enhancements in thin nanostrip antennas.
    Beermann J; Novikov SM; Søndergaard T; Boltasseva A; Bozhevolnyi SI
    Opt Express; 2008 Oct; 16(22):17302-9. PubMed ID: 18958013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origin of Zenneck-like waves excited by optical nanoantennas in non-plasmonic transition metals.
    Yi J; de León-Pérez F; Cuche A; Devaux E; Genet C; Martín-Moreno L; Ebbesen TW
    Opt Express; 2022 Sep; 30(19):34984-34997. PubMed ID: 36242501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy.
    Chaturvedi P; Hsu KH; Kumar A; Fung KH; Mabon JC; Fang NX
    ACS Nano; 2009 Oct; 3(10):2965-74. PubMed ID: 19739603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study.
    Myroshnychenko V; Nelayah J; Adamo G; Geuquet N; Rodríguez-Fernández J; Pastoriza-Santos I; MacDonald KF; Henrard L; Liz-Marzán LM; Zheludev NI; Kociak M; García de Abajo FJ
    Nano Lett; 2012 Aug; 12(8):4172-80. PubMed ID: 22746278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical scattering resonances of single and coupled dimer plasmonic nanoantennas.
    Muskens OL; Giannini V; Sánchez-Gil JA; Gómez Rivas J
    Opt Express; 2007 Dec; 15(26):17736-46. PubMed ID: 19551070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of Light Emission by a Plasmonic Crystal Cavity.
    Saito H; Yamamoto N
    Nano Lett; 2015 Sep; 15(9):5764-9. PubMed ID: 26301432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local electron beam excitation and substrate effect on the plasmonic response of single gold nanostars.
    Das P; Kedia A; Kumar PS; Large N; Chini TK
    Nanotechnology; 2013 Oct; 24(40):405704. PubMed ID: 24029251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas.
    Collette R; Garfinkel DA; Hu Z; Masiello DJ; Rack PD
    Sci Rep; 2020 Jul; 10(1):12537. PubMed ID: 32719406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity.
    Seo MK; Kwon SH; Ee HS; Park HG
    Nano Lett; 2009 Dec; 9(12):4078-82. PubMed ID: 19995082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cathodoluminescence Nanoscopy of 3D Plasmonic Networks.
    Ron R; Zielinski MS; Salomon A
    Nano Lett; 2020 Nov; 20(11):8205-8211. PubMed ID: 33054237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Standing wave plasmon modes interact in an antenna-coupled nanowire.
    Day JK; Large N; Nordlander P; Halas NJ
    Nano Lett; 2015 Feb; 15(2):1324-30. PubMed ID: 25565116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers.
    Landreman PE; Brongersma ML
    Nano Lett; 2014 Feb; 14(2):429-34. PubMed ID: 24382272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient directional excitation of surface plasmons by a single-element nanoantenna.
    Yao W; Liu S; Liao H; Li Z; Sun C; Chen J; Gong Q
    Nano Lett; 2015 May; 15(5):3115-21. PubMed ID: 25848855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D nanopillar optical antenna photodetectors.
    Senanayake P; Hung CH; Shapiro J; Scofield A; Lin A; Williams BS; Huffaker DL
    Opt Express; 2012 Nov; 20(23):25489-96. PubMed ID: 23187366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical coupling and extreme confinement in nanogap antennas.
    Emeric L; Deeb C; Pardo F; Pelouard JL
    Opt Lett; 2019 Oct; 44(19):4761-4764. PubMed ID: 31568436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.