These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21879729)

  • 41. Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition.
    Lee EK; Song JH; Jeong KY; Kang JH; Park HG; Seo MK
    Sci Rep; 2015 May; 5():10400. PubMed ID: 25988729
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robustness of plasmon phased array nanoantennas to disorder.
    Arango FB; Thijssen R; Brenny B; Coenen T; Koenderink AF
    Sci Rep; 2015 Jun; 5():10911. PubMed ID: 26038871
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements.
    Losquin A; Zagonel LF; Myroshnychenko V; Rodríguez-González B; Tencé M; Scarabelli L; Förstner J; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2015 Feb; 15(2):1229-37. PubMed ID: 25603194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas.
    Zhang Q; Xiao JJ; Li M; Han D; Gao L
    Sci Rep; 2015 Nov; 5():17234. PubMed ID: 26611726
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical antennas with sinusoidal modulation in width.
    Dikken DJ; Segerink FB; Korterik JP; Pfaff SS; Prangsma JC; Herek JL
    Opt Express; 2016 Aug; 24(16):17874-85. PubMed ID: 27505755
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe.
    Rossouw D; Couillard M; Vickery J; Kumacheva E; Botton GA
    Nano Lett; 2011 Apr; 11(4):1499-504. PubMed ID: 21446717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cathodoluminescence and optical absorption spectroscopy of plasmonic modes in chromium micro-rods.
    Ghorai G; Ghosh K; Das B; Sahoo S; Patra B; Samal P; Sahoo PK
    Nanotechnology; 2022 Dec; 34(7):. PubMed ID: 36384032
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy.
    Coenen T; Vesseur EJ; Polman A; Koenderink AF
    Nano Lett; 2011 Sep; 11(9):3779-84. PubMed ID: 21780758
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Silver superlens using antisymmetric surface plasmon modes.
    Lee WJ; Kim JE; Park HY; Lee MH
    Opt Express; 2010 Mar; 18(6):5459-65. PubMed ID: 20389562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.
    Knight MW; Coenen T; Yang Y; Brenny BJ; Losurdo M; Brown AS; Everitt HO; Polman A
    ACS Nano; 2015 Feb; 9(2):2049-60. PubMed ID: 25629392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectral properties of plasmonic resonator antennas.
    Barnard ES; White JS; Chandran A; Brongersma ML
    Opt Express; 2008 Oct; 16(21):16529-37. PubMed ID: 18852761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis and design of hybrid ARROW-B plasmonic waveguides.
    Shruti S; Sinha RK; Bhattacharyya R
    J Opt Soc Am A Opt Image Sci Vis; 2013 Aug; 30(8):1502-7. PubMed ID: 24323207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coupling of plasmonic nanopore pairs: facing dipoles attract each other.
    Sannomiya T; Saito H; Junesch J; Yamamoto N
    Light Sci Appl; 2016 Sep; 5(9):e16146. PubMed ID: 30167187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Efficient Colored Perovskite Solar Cells Integrated with Ultrathin Subwavelength Plasmonic Nanoresonators.
    Lee KT; Jang JY; Zhang J; Yang SM; Park S; Park HJ
    Sci Rep; 2017 Sep; 7(1):10640. PubMed ID: 28878362
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy.
    Zhu XL; Ma Y; Zhang JS; Xu J; Wu XF; Zhang Y; Han XB; Fu Q; Liao ZM; Chen L; Yu DP
    Phys Rev Lett; 2010 Sep; 105(12):127402. PubMed ID: 20867670
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A double-strip plasmonic waveguide coupled to an electrically driven nanowire LED.
    No YS; Choi JH; Ee HS; Hwang MS; Jeong KY; Lee EK; Seo MK; Kwon SH; Park HG
    Nano Lett; 2013 Feb; 13(2):772-6. PubMed ID: 23324101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition.
    Acar H; Coenen T; Polman A; Kuipers LK
    ACS Nano; 2012 Sep; 6(9):8226-32. PubMed ID: 22889269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.