These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21879756)

  • 41. Formation of neptunium(IV)-silica colloids at near-neutral and slightly alkaline pH.
    Husar R; Weiss S; Hennig C; Hübner R; Ikeda-Ohno A; Zänker H
    Environ Sci Technol; 2015 Jan; 49(1):665-71. PubMed ID: 25401282
    [TBL] [Abstract][Full Text] [Related]  

  • 42. XAS and TRLIF spectroscopy of uranium and neptunium in seawater.
    Maloubier M; Solari PL; Moisy P; Monfort M; Den Auwer C; Moulin C
    Dalton Trans; 2015 Mar; 44(12):5417-27. PubMed ID: 25689216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Concrete and cement composites used for radioactive waste deposition.
    Koťátková J; Zatloukal J; Reiterman P; Kolář K
    J Environ Radioact; 2017 Nov; 178-179():147-155. PubMed ID: 28843164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Np(IV)/Np(V) valence determinations from Np L3 edge XANES/EXAFS.
    Denecke MA; Dardenne K; Marquardt CM
    Talanta; 2005 Feb; 65(4):1008-14. PubMed ID: 18969903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of a ternary neptunyl(V) biscarbonato inner-sphere sorption complex inhibits calcite growth rate.
    Heberling F; Scheinost AC; Bosbach D
    J Contam Hydrol; 2011 Jun; 124(1-4):50-6. PubMed ID: 21429616
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cerium(IV), neptunium(IV), and plutonium(IV) 1,2-phenylenediphosphonates: correlations and differences between early transuranium elements and their proposed surrogates.
    Diwu J; Wang S; Liao Z; Burns PC; Albrecht-Schmitt TE
    Inorg Chem; 2010 Nov; 49(21):10074-80. PubMed ID: 20919712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Radioactive waste forms stabilized by ChemChar gasification: characterization and leaching behavior of cerium, thorium, protactinium, uranium, and neptunium.
    Marrero TW; Morris JS; Manahan SE
    Chemosphere; 2004 Feb; 54(7):873-85. PubMed ID: 14637345
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review.
    Chen QY; Tyrer M; Hills CD; Yang XM; Carey P
    Waste Manag; 2009 Jan; 29(1):390-403. PubMed ID: 18367391
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A SEM and X-ray study for investigation of solidified/stabilized arsenic-iron hydroxide sludge.
    Phenrat T; Marhaba TF; Rachakornkij M
    J Hazard Mater; 2005 Feb; 118(1-3):185-95. PubMed ID: 15721543
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cement As a Waste Form for Nuclear Fission Products: The Case of (90)Sr and Its Daughters.
    Dezerald L; Kohanoff JJ; Correa AA; Caro A; Pellenq RJ; Ulm FJ; Saúl A
    Environ Sci Technol; 2015 Nov; 49(22):13676-83. PubMed ID: 26513644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.
    Kovler K
    J Environ Radioact; 2006; 86(3):354-66. PubMed ID: 16356604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immobilization of organic pollutants in cement pastes admixed with organophilic materials.
    Dotelli G; Stampino PG; Zampori L; Sora IN; Pelosato R
    Waste Manag Res; 2008 Dec; 26(6):515-22. PubMed ID: 19039067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microscale investigation of arsenic distribution and species in cement product from cement kiln coprocessing wastes.
    Yang Y; Xue J; Huang Q
    ScientificWorldJournal; 2013; 2013():518676. PubMed ID: 24223030
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radon exhalation of cementitious materials made with coal fly ash: Part 2--testing hardened cement-fly ash pastes.
    Kovler K; Perevalov A; Levit A; Steiner V; Metzger LA
    J Environ Radioact; 2005; 82(3):335-50. PubMed ID: 15885379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reliable determination of 237Np in environmental solid samples using 242Pu as a potential tracer.
    Qiao J; Hou X; Roos P; Miró M
    Talanta; 2011 Apr; 84(2):494-500. PubMed ID: 21376978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of technetium speciation in reducing grout.
    Lukens WW; Bucher JI; Shuh DK; Edelstein NM
    Environ Sci Technol; 2005 Oct; 39(20):8064-70. PubMed ID: 16295876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Th uptake on montmorillonite: a powder and polarized extended X-ray absorption fine structure (EXAFS) study.
    Dähn R; Scheidegger AM; Manceau A; Curti E; Baeyens B; Bradbury MH; Chateigner D
    J Colloid Interface Sci; 2002 May; 249(1):8-21. PubMed ID: 16290564
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using sequential extraction techniques to assess the partitioning of plutonium and neptunium-237 from multiple sources in sediments from the Ob River (Siberia).
    Kenna TC
    J Environ Radioact; 2009 Jul; 100(7):547-57. PubMed ID: 19394119
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydration and leaching characteristics of cement pastes made from electroplating sludge.
    Chen YL; Ko MS; Lai YC; Chang JE
    Waste Manag; 2011 Jun; 31(6):1357-63. PubMed ID: 21295462
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of transferrin in actinide(IV) uptake: comparison with iron(III).
    Jeanson A; Ferrand M; Funke H; Hennig C; Moisy P; Solari PL; Vidaud C; Den Auwer C
    Chemistry; 2010 Jan; 16(4):1378-87. PubMed ID: 19950335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.