These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21880497)

  • 1. Stopping power and mean free path for low-energy electrons in ten scintillators over energy range of 20-20,000 eV.
    Tan Z; Xia Y
    Appl Radiat Isot; 2012 Jan; 70(1):296-300. PubMed ID: 21880497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculations of stopping powers and inelastic mean free paths for 20 eV-20 keV electrons in 11 types of human tissue.
    Tan Z; Liu W
    Appl Radiat Isot; 2013 Dec; 82():325-31. PubMed ID: 24144616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new calculation on the stopping power and mean free path for low energy electrons in toluene over energy range of 20-10000 eV.
    Tan Z; Xia Y; Liu X; Zhao M; Zhang L
    Appl Radiat Isot; 2009 Apr; 67(4):625-9. PubMed ID: 19138526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inelastic scattering and stopping power of low-energy electrons (0.01-10 keV) in toluene.
    García G; Blanco F; Grau Carles A; Grau Malonda A
    Appl Radiat Isot; 2004; 60(2-4):481-5. PubMed ID: 14987689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface.
    Emfietzoglou D; Nikjoo H
    Radiat Res; 2007 Jan; 167(1):110-20. PubMed ID: 17214512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron stopping power and inelastic mean free path in amino acids and protein over the energy range of 20-20,000 eV.
    Tan Z; Xia Y; Zhao M; Liu X
    Radiat Environ Biophys; 2006 Jul; 45(2):135-43. PubMed ID: 16733724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron inelastic mean free path formula and CSDA-range calculation in biological compounds for low and intermediate energies.
    Akar A; Gümüş H; Okumuşoğlu NT
    Appl Radiat Isot; 2006 May; 64(5):543-50. PubMed ID: 16388951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New stopping power formula for intermediate energy electrons.
    Gümüş H
    Appl Radiat Isot; 2008 Dec; 66(12):1886-90. PubMed ID: 18586505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel polysiloxane-based scintillators for neutron detection.
    Carturan S; Quaranta A; Marchi T; Gramegna F; Degerlier M; Cinausero M; Kravchuk VL; Poggi M
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):471-6. PubMed ID: 21112884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications.
    Wang B; Gallais L
    Opt Express; 2013 Jun; 21(12):14698-711. PubMed ID: 23787658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of accelerators for the research and development of scintillators.
    Shibuya K; Koshimizu M; Asai K; Muroya Y; Katsumura Y; Inadama N; Yoshida E; Nishikido F; Yamaya T; Murayama H
    Rev Sci Instrum; 2007 Aug; 78(8):083303. PubMed ID: 17764319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.
    Liljequist D
    Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects.
    Emfietzoglou D; Kyriakou I; Garcia-Molina R; Abril I; Nikjoo H
    Radiat Res; 2013 Nov; 180(5):499-513. PubMed ID: 24131062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stopping powers and inelastic mean free path of 200eV-50keV electrons in polymer PMMA, PE, and PVC.
    Tahir D; Suarga ; Sari NH; Yulianti
    Appl Radiat Isot; 2015 Jan; 95():59-62. PubMed ID: 25464178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of dual γ-ray imager with active collimator using various types of scintillators.
    Lee W; Lee T; Jeong M; Kim HK
    Appl Radiat Isot; 2011 Oct; 69(10):1560-7. PubMed ID: 21767956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient calculation of higher-order optical waveguide dispersion.
    Mores JA; Malheiros-Silveira GN; Fragnito HL; Hernández-Figueroa HE
    Opt Express; 2010 Sep; 18(19):19522-31. PubMed ID: 20940848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nearly perfect absorption in intrinsically low-loss grating structures.
    Chern RL; Hong WT
    Opt Express; 2011 Apr; 19(9):8962-72. PubMed ID: 21643149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfectly matched layer absorption boundary condition in planewave based transfer-scattering matrix method for photonic crystal device simulation.
    Li M; Hu X; Ye Z; Ho KM; Cao J; Miyawaki M
    Opt Express; 2008 Jul; 16(15):11548-54. PubMed ID: 18648476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water.
    Emfietzoglou D; Garcia-Molina R; Kyriakou I; Abril I; Nikjoo H
    Phys Med Biol; 2009 Jun; 54(11):3451-72. PubMed ID: 19436107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.