These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21880908)

  • 1. Age-related changes in orienting attention in time.
    Zanto TP; Pan P; Liu H; Bollinger J; Nobre AC; Gazzaley A
    J Neurosci; 2011 Aug; 31(35):12461-70. PubMed ID: 21880908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normal aging selectively diminishes alpha lateralization in visual spatial attention.
    Hong X; Sun J; Bengson JJ; Mangun GR; Tong S
    Neuroimage; 2015 Feb; 106():353-63. PubMed ID: 25463457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-associated modulations of cerebral oscillatory patterns related to attention control.
    Deiber MP; Ibañez V; Missonnier P; Rodriguez C; Giannakopoulos P
    Neuroimage; 2013 Nov; 82():531-46. PubMed ID: 23777759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The timing of neural activity during shifts of spatial attention.
    Brignani D; Lepsien J; Rushworth MF; Nobre AC
    J Cogn Neurosci; 2009 Dec; 21(12):2369-83. PubMed ID: 19199414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults.
    Heideman SG; Rohenkohl G; Chauvin JJ; Palmer CE; van Ede F; Nobre AC
    Neuroimage; 2018 Sep; 178():46-56. PubMed ID: 29733953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of deficit of visuospatial attention shift in children with developmental coordination disorder: a neurophysiological measure of the endogenous Posner paradigm.
    Tsai CL; Pan CY; Cherng RJ; Hsu YW; Chiu HH
    Brain Cogn; 2009 Dec; 71(3):246-58. PubMed ID: 19751962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid targeting followed by sustained deployment of visual spatial attention.
    Simpson GV; Dale CL; Luks TL; Miller WL; Ritter W; Foxe JJ
    Neuroreport; 2006 Oct; 17(15):1595-9. PubMed ID: 17001275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals.
    Davranche K; Nazarian B; Vidal F; Coull J
    J Cogn Neurosci; 2011 Nov; 23(11):3318-30. PubMed ID: 21452942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in the attentional control of visual cortex: a selective problem in the left visual hemifield.
    Nagamatsu LS; Carolan P; Liu-Ambrose TY; Handy TC
    Neuropsychologia; 2011 Jun; 49(7):1670-8. PubMed ID: 21356222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delays in neural processing during working memory encoding in normal aging.
    Zanto TP; Toy B; Gazzaley A
    Neuropsychologia; 2010 Jan; 48(1):13-25. PubMed ID: 19666036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prism Adaptation Alters Electrophysiological Markers of Attentional Processes in the Healthy Brain.
    Martín-Arévalo E; Laube I; Koun E; Farnè A; Reilly KT; Pisella L
    J Neurosci; 2016 Jan; 36(3):1019-30. PubMed ID: 26791229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention.
    Dale CL; Simpson GV; Foxe JJ; Luks TL; Worden MS
    Exp Brain Res; 2008 Jun; 188(1):45-62. PubMed ID: 18347786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating the attentional bias in unilateral neglect: the effects of the strategic set.
    Bartolomeo P; Siéroff E; Decaix C; Chokron S
    Exp Brain Res; 2001 Apr; 137(3-4):432-44. PubMed ID: 11355388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does white matter matter? Spatio-temporal dynamics of task switching in aging.
    Gratton G; Wee E; Rykhlevskaia EI; Leaver EE; Fabiani M
    J Cogn Neurosci; 2009 Jul; 21(7):1380-95. PubMed ID: 18752402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking time-on-task, spatial bias and hemispheric activation asymmetry: a neural correlate of rightward attention drift.
    Newman DP; O'Connell RG; Bellgrove MA
    Neuropsychologia; 2013 Jun; 51(7):1215-23. PubMed ID: 23583973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous orienting of visual-spatial attention in ADHD children.
    Ortega R; López V; Carrasco X; Anllo-Vento L; Aboitiz F
    Brain Res; 2013 Feb; 1493():68-79. PubMed ID: 23200900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ERP evidence for selective drop in attentional costs in uncertain environments: challenging a purely premotor account of covert orienting of attention.
    Lasaponara S; Chica AB; Lecce F; Lupianez J; Doricchi F
    Neuropsychologia; 2011 Jul; 49(9):2648-57. PubMed ID: 21640737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.
    Thut G; Nietzel A; Brandt SA; Pascual-Leone A
    J Neurosci; 2006 Sep; 26(37):9494-502. PubMed ID: 16971533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-differential effects on updating cue information: evidence from event-related potentials.
    Schmitt H; Ferdinand NK; Kray J
    Cogn Affect Behav Neurosci; 2014 Sep; 14(3):1115-31. PubMed ID: 24590394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study.
    Kelly SP; Gomez-Ramirez M; Foxe JJ
    Eur J Neurosci; 2009 Dec; 30(11):2224-34. PubMed ID: 19930401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.