These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21880953)

  • 1. Creatine supplementation prevents the accumulation of fat in the livers of rats fed a high-fat diet.
    Deminice R; da Silva RP; Lamarre SG; Brown C; Furey GN; McCarter SA; Jordao AA; Kelly KB; King-Jones K; Jacobs RL; Brosnan ME; Brosnan JT
    J Nutr; 2011 Oct; 141(10):1799-804. PubMed ID: 21880953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: a burden of one-carbon and fatty acid metabolism.
    Deminice R; de Castro GS; Francisco LV; da Silva LE; Cardoso JF; Frajacomo FT; Teodoro BG; Dos Reis Silveira L; Jordao AA
    J Nutr Biochem; 2015 Apr; 26(4):391-7. PubMed ID: 25649792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Betaine supplementation prevents fatty liver induced by a high-fat diet: effects on one-carbon metabolism.
    Deminice R; da Silva RP; Lamarre SG; Kelly KB; Jacobs RL; Brosnan ME; Brosnan JT
    Amino Acids; 2015 Apr; 47(4):839-46. PubMed ID: 25577261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine Supplementation Does Not Prevent the Development of Alcoholic Steatosis.
    Ganesan M; Feng D; Barton RW; Thomes PG; McVicker BL; Tuma DJ; Osna NA; Kharbanda KK
    Alcohol Clin Exp Res; 2016 Nov; 40(11):2312-2319. PubMed ID: 27581622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatically synthesized glycogen reduces lipid accumulation in diet-induced obese rats.
    Furuyashiki T; Ogawa R; Nakayama Y; Honda K; Kamisoyama H; Takata H; Yasuda M; Kuriki T; Ashida H
    Nutr Res; 2013 Sep; 33(9):743-52. PubMed ID: 24034574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet.
    Xu L; Huang D; Hu Q; Wu J; Wang Y; Feng J
    Br J Nutr; 2015 Jun; 113(12):1835-43. PubMed ID: 25920593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dietary genistein on hepatic lipid metabolism and mitochondrial function in mice fed high-fat diets.
    Lee YM; Choi JS; Kim MH; Jung MH; Lee YS; Song J
    Nutrition; 2006 Sep; 22(9):956-64. PubMed ID: 16814985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin D attenuates high fat diet-induced hepatic steatosis in rats by modulating lipid metabolism.
    Yin Y; Yu Z; Xia M; Luo X; Lu X; Ling W
    Eur J Clin Invest; 2012 Nov; 42(11):1189-96. PubMed ID: 22958216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate.
    Stead LM; Au KP; Jacobs RL; Brosnan ME; Brosnan JT
    Am J Physiol Endocrinol Metab; 2001 Nov; 281(5):E1095-100. PubMed ID: 11595668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas.
    da Silva RP; Clow K; Brosnan JT; Brosnan ME
    Br J Nutr; 2014 Feb; 111(4):571-7. PubMed ID: 24103317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo.
    da Silva RP; Nissim I; Brosnan ME; Brosnan JT
    Am J Physiol Endocrinol Metab; 2009 Feb; 296(2):E256-61. PubMed ID: 19017728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feeding oxidized fat during pregnancy up-regulates expression of PPARalpha-responsive genes in the liver of rat fetuses.
    Ringseis R; Gutgesell A; Dathe C; Brandsch C; Eder K
    Lipids Health Dis; 2007 Mar; 6():6. PubMed ID: 17352811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The mechanism of and relationship between lipid metabolism genes expression and insulin resistance in high fat-fed mice].
    Bai XP; Li HL; Yang WY; Xiao JZ; Wang B; Du RQ; Lou DJ
    Zhonghua Nei Ke Za Zhi; 2007 Sep; 46(9):751-4. PubMed ID: 18028806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of a high-fat or high-sucrose diet on serum lipid profiles, hepatic acyl-CoA synthetase, carnitine palmitoyltransferase-I, and the acetyl-CoA carboxylase mRNA levels in rats.
    Ryu MH; Cha YS
    J Biochem Mol Biol; 2003 May; 36(3):312-8. PubMed ID: 12787488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic role of niacin in the prevention and regression of hepatic steatosis in rat model of nonalcoholic fatty liver disease.
    Ganji SH; Kukes GD; Lambrecht N; Kashyap ML; Kamanna VS
    Am J Physiol Gastrointest Liver Physiol; 2014 Feb; 306(4):G320-7. PubMed ID: 24356885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet.
    da Silva RP; Leonard KA; Jacobs RL
    J Nutr Biochem; 2017 Dec; 50():46-53. PubMed ID: 29031242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.
    Huang Y; Zhu Z; Xie M; Xue J
    Nutr Res; 2015 Sep; 35(9):792-9. PubMed ID: 26239949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.
    Ferramosca A; Conte A; Burri L; Berge K; De Nuccio F; Giudetti AM; Zara V
    PLoS One; 2012; 7(6):e38797. PubMed ID: 22685607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-fat diet reduces ceramide synthesis by decreasing adiponectin levels and decreases lipid content by modulating HMG-CoA reductase and CPT-1 mRNA expression in the skin.
    Yamane T; Kobayashi-Hattori K; Oishi Y
    Mol Nutr Food Res; 2011 Sep; 55 Suppl 2():S186-92. PubMed ID: 21732532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary α-lactalbumin induced fatty liver by enhancing nuclear liver X receptor αβ/sterol regulatory element-binding protein-1c/PPARγ expression and minimising PPARα/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinase α phosphorylation associated with atherogenic dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice.
    López-Oliva ME; Garcimartin A; Muñoz-Martínez E
    Br J Nutr; 2017 Dec; 118(11):914-929. PubMed ID: 29173234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.