These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 21881631)
1. Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane. Weng W; Davies M; Whiting G; Solsona B; Kiely CJ; Carley AF; Taylor SH Phys Chem Chem Phys; 2011 Oct; 13(38):17395-404. PubMed ID: 21881631 [TBL] [Abstract][Full Text] [Related]
2. Probe molecule chemisorption-low energy ion scattering study of surface active sites present in the orthorhombic Mo-V-(Te-Nb)-O catalysts for propane (amm)oxidation. Guliants VV; Bhandari R; Hughett AR; Bhatt S; Schuler BD; Brongersma HH; Knoester A; Gaffney AM; Han S J Phys Chem B; 2006 Mar; 110(12):6129-40. PubMed ID: 16553426 [TBL] [Abstract][Full Text] [Related]
3. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane. Zhu H; Rosenfeld DC; Anjum DH; Caps V; Basset JM ChemSusChem; 2015 Apr; 8(7):1254-63. PubMed ID: 25755222 [TBL] [Abstract][Full Text] [Related]
4. Roles of surface Te, Nb, and Sb oxides in propane oxidation to acrylic acid over bulk orthorhombic Mo-V-O phase. Guliants VV; Bhandari R; Swaminathan B; Vasudevan VK; Brongersma HH; Knoester A; Gaffney AM; Han S J Phys Chem B; 2005 Dec; 109(50):24046-55. PubMed ID: 16375396 [TBL] [Abstract][Full Text] [Related]
5. Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane. Rodríguez-Castellón E; Delgado D; Dejoz A; Vázquez I; Agouram S; Cecilia JA; Solsona B; López Nieto JM Chemistry; 2020 Jul; 26(42):9371-9381. PubMed ID: 32301531 [TBL] [Abstract][Full Text] [Related]
6. A study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane. Popescu I; Skoufa Z; Heracleous E; Lemonidou A; Marcu IC Phys Chem Chem Phys; 2015 Mar; 17(12):8138-47. PubMed ID: 25728825 [TBL] [Abstract][Full Text] [Related]
7. Niobium- and tantalum-based ethylene polymerisation catalysts bearing methylene- or dimethyleneoxa-bridged calixarene ligands. Redshaw C; Rowan M; Homden DM; Elsegood MR; Yamato T; Pérez-Casas C Chemistry; 2007; 13(36):10129-39. PubMed ID: 17918176 [TBL] [Abstract][Full Text] [Related]
8. In situ Raman studies during sulfidation, and operando Raman-GC during ammoxidation reaction using nickel-containing catalysts: a valuable tool to identify the transformations of catalytic species. Guerrero-Pérez MO; Rojas E; Gutiérrez-Alejandre A; Ramírez J; Sánchez-Minero F; Fernández-Vargas C; Bañares MA Phys Chem Chem Phys; 2011 May; 13(20):9260-7. PubMed ID: 21472171 [TBL] [Abstract][Full Text] [Related]
9. Optimized Nb-Based Zeolites as Catalysts for the Synthesis of Succinic Acid and FDCA. El Fergani M; Candu N; Tudorache M; Granger P; Parvulescu VI; Coman SM Molecules; 2020 Oct; 25(21):. PubMed ID: 33105761 [TBL] [Abstract][Full Text] [Related]
10. Enhanced ethylene and ethane production with free-radical cracking catalysts. Kolts JH; Delzer GA Science; 1986 May; 232(4751):744-6. PubMed ID: 17769569 [TBL] [Abstract][Full Text] [Related]
12. Study by electrical conductivity measurements of semiconductive and redox properties of M-doped NiO (M = Li, Mg, Al, Ga, Ti, Nb) catalysts for the oxidative dehydrogenation of ethane. Popescu I; Heracleous E; Skoufa Z; Lemonidou A; Marcu IC Phys Chem Chem Phys; 2014 Mar; 16(10):4962-70. PubMed ID: 24477867 [TBL] [Abstract][Full Text] [Related]
13. Selective synthesis of vitamin K3 over mesoporous NbSBA-15 catalysts synthesized by an efficient hydrothermal method. Selvaraj M; Park DW; Kim I; Kawi S; Ha CS Dalton Trans; 2012 Aug; 41(32):9633-8. PubMed ID: 22797675 [TBL] [Abstract][Full Text] [Related]
14. Deactivation pathways of neutral Ni(II) polymerization catalysts. Berkefeld A; Mecking S J Am Chem Soc; 2009 Feb; 131(4):1565-74. PubMed ID: 19138124 [TBL] [Abstract][Full Text] [Related]
15. The development of scalemic multidentate niobium complexes as catalysts for the highly stereoselective ring opening of meso-epoxides and meso-aziridines. Arai K; Lucarini S; Salter MM; Ohta K; Yamashita Y; Kobayashi S J Am Chem Soc; 2007 Jul; 129(26):8103-11. PubMed ID: 17567008 [TBL] [Abstract][Full Text] [Related]
16. Selective hydrogen oxidation in the presence of C3 hydrocarbons using perovskite oxygen reservoirs. Beckers J; Drost R; van Zandvoort I; Collignon PF; Rothenberg G Chemphyschem; 2008 May; 9(7):1062-8. PubMed ID: 18418824 [TBL] [Abstract][Full Text] [Related]
17. An operando Raman study of molecular structure and reactivity of molybdenum(VI) oxide supported on anatase for the oxidative dehydrogenation of ethane. Tsilomelekis G; Boghosian S Phys Chem Chem Phys; 2012 Feb; 14(7):2216-28. PubMed ID: 22143865 [TBL] [Abstract][Full Text] [Related]
18. In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and Oxidative Dehydrogenation of Propane and Ethane. Cheng MJ; Goddard WA J Am Chem Soc; 2015 Oct; 137(41):13224-7. PubMed ID: 26423704 [TBL] [Abstract][Full Text] [Related]
19. Reactivity of niobium-carbon cluster ions with hydrogen molecules in relation to formation mechanism of Met-Car cluster ions. Miyajima K; Fukushima N; Mafuné F J Phys Chem A; 2008 Jul; 112(26):5774-6. PubMed ID: 18537226 [TBL] [Abstract][Full Text] [Related]
20. Novel borothermal process for the synthesis of nanocrystalline oxides and borides of niobium. Jha M; Ramanujachary KV; Lofland SE; Gupta G; Ganguli AK Dalton Trans; 2011 Aug; 40(31):7879-88. PubMed ID: 21743887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]