These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21881679)

  • 1. Patterns of indirect protein interactions suggest a spatial organization to metabolism.
    Pérez-Bercoff Å; McLysaght A; Conant GC
    Mol Biosyst; 2011 Nov; 7(11):3056-64. PubMed ID: 21881679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.
    Huthmacher C; Gille C; Holzhütter HG
    J Theor Biol; 2008 Jun; 252(3):456-64. PubMed ID: 17988690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of protein-protein interactions in metabolic networks of Escherichia coli and yeast.
    Huthmacher C; Gille C; Holzhütter HG
    Genome Inform; 2007; 18():162-72. PubMed ID: 18546484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway identification by network pruning in the metabolic network of Escherichia coli.
    Gerlee P; Lizana L; Sneppen K
    Bioinformatics; 2009 Dec; 25(24):3282-8. PubMed ID: 19808881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural census of metabolic networks for E. coli.
    Saqi MA; Sternberg MJ
    J Mol Biol; 2001 Nov; 313(5):1195-206. PubMed ID: 11700074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles.
    Durek P; Walther D
    BMC Syst Biol; 2008 Nov; 2():100. PubMed ID: 19032748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homology, pathway distance and chromosomal localization of the small molecule metabolism enzymes in Escherichia coli.
    Rison SC; Teichmann SA; Thornton JM
    J Mol Biol; 2002 May; 318(3):911-32. PubMed ID: 12054833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global organization of metabolic fluxes in the bacterium Escherichia coli.
    Almaas E; Kovács B; Vicsek T; Oltvai ZN; Barabási AL
    Nature; 2004 Feb; 427(6977):839-43. PubMed ID: 14985762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of core-attachment complexes based on maximal frequent patterns in protein-protein interaction networks.
    Yu L; Gao L; Kong C
    Proteomics; 2011 Oct; 11(19):3826-34. PubMed ID: 21761565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast protein interaction network has a capacity for self-organization.
    Dhroso A; Korkin D; Conant GC
    FEBS J; 2014 Aug; 281(15):3420-32. PubMed ID: 24924781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure networks of E. coli glutaminyl-tRNA synthetase: effects of ligand binding.
    Sathyapriya R; Vishveshwara S
    Proteins; 2007 Aug; 68(2):541-50. PubMed ID: 17444518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic enzymes that bind RNA: yet another level of cellular regulatory network?
    Cieśla J
    Acta Biochim Pol; 2006; 53(1):11-32. PubMed ID: 16410835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL.
    Powl AM; East JM; Lee AG
    Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli.
    Baldazzi V; Ropers D; Geiselmann J; Kahn D; de Jong H
    J Theor Biol; 2012 Feb; 295():100-15. PubMed ID: 22138386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Emili A
    Methods Mol Biol; 2011; 781():99-126. PubMed ID: 21877280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Greenblatt J; Emili A
    Methods Mol Biol; 2011; 765():125-53. PubMed ID: 21815091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic pathway flux enhancement by synthetic protein scaffolding.
    Whitaker WR; Dueber JE
    Methods Enzymol; 2011; 497():447-68. PubMed ID: 21601098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing and predicting protein interactions using both local and global network topological metrics.
    Liu G; Li J; Wong L
    Genome Inform; 2008; 21():138-49. PubMed ID: 19425154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture.
    Caetano-Anollés G; Kim HS; Mittenthal JE
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9358-63. PubMed ID: 17517598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.