These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 21881810)

  • 1. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.
    Fernandes T; Soci UP; Oliveira EM
    Braz J Med Biol Res; 2011 Sep; 44(9):836-47. PubMed ID: 21881810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac hypertrophy in mice submitted to a swimming protocol: influence of training volume and intensity on myocardial renin-angiotensin system.
    Soares DDS; Pinto GH; Lopes A; Caetano DSL; Nascimento TG; Andrades ME; Clausell N; Rohde LEP; Leitão SAT; Biolo A
    Am J Physiol Regul Integr Comp Physiol; 2019 Jun; 316(6):R776-R782. PubMed ID: 31042418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs.
    Fernandes T; Baraúna VG; Negrão CE; Phillips MI; Oliveira EM
    Am J Physiol Heart Circ Physiol; 2015 Aug; 309(4):H543-52. PubMed ID: 26071549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies.
    Bernardo BC; Weeks KL; Pretorius L; McMullen JR
    Pharmacol Ther; 2010 Oct; 128(1):191-227. PubMed ID: 20438756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the activation and inhibition of angiotensin II type 1 receptor in the mechanically loaded heart.
    Wu J; You J; Wang S; Zhang L; Gong H; Zou Y
    Circ J; 2014; 78(6):1283-9. PubMed ID: 24813328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling.
    Davis RT; Simon JN; Utter M; Mungai P; Alvarez MG; Chowdhury SA; Heydemann A; Ke Y; Wolska BM; Solaro RJ
    Cardiovasc Res; 2015 Dec; 108(3):335-47. PubMed ID: 26464331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy.
    Zhou L; Ma B; Han X
    J Mol Endocrinol; 2016 Nov; 57(4):R143-R152. PubMed ID: 27620875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small changes can make a big difference - microRNA regulation of cardiac hypertrophy.
    Gladka MM; da Costa Martins PA; De Windt LJ
    J Mol Cell Cardiol; 2012 Jan; 52(1):74-82. PubMed ID: 21971075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of physiological and pathological cardiac hypertrophy.
    Nakamura M; Sadoshima J
    Nat Rev Cardiol; 2018 Jul; 15(7):387-407. PubMed ID: 29674714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatics Analysis Reveals MicroRNAs Regulating Biological Pathways in Exercise-Induced Cardiac Physiological Hypertrophy.
    Xu J; Liu Y; Xie Y; Zhao C; Wang H
    Biomed Res Int; 2017; 2017():2850659. PubMed ID: 28286759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression profiling of exercise-induced cardiac hypertrophy in rats.
    Iemitsu M; Maeda S; Miyauchi T; Matsuda M; Tanaka H
    Acta Physiol Scand; 2005 Dec; 185(4):259-70. PubMed ID: 16266368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of microRNA-99a Attenuates Cardiac Hypertrophy.
    Li Q; Xie J; Wang B; Li R; Bai J; Ding L; Gu R; Wang L; Xu B
    PLoS One; 2016; 11(2):e0148480. PubMed ID: 26914935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of insulin-like growth factor-1 by the renin-angiotensin system during regression of cardiac eccentric hypertrophy through angiotensin-converting enzyme inhibitor and AT1 antagonist.
    Haddad GE; Blackwell K; Bikhazi A
    Can J Physiol Pharmacol; 2003 Feb; 81(2):142-9. PubMed ID: 12710528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene deletion of P2Y4 receptor lowers exercise capacity and reduces myocardial hypertrophy with swimming exercise.
    Horckmans M; Léon-Gómez E; Robaye B; Balligand JL; Boeynaems JM; Dessy C; Communi D
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H835-43. PubMed ID: 22865387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Aspects of Exercise-induced Cardiac Remodeling.
    Bernardo BC; McMullen JR
    Cardiol Clin; 2016 Nov; 34(4):515-530. PubMed ID: 27692221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs target gene and signaling pathway by bioinformatics analysis in the cardiac hypertrophy.
    Shen E; Diao X; Wei C; Wu Z; Zhang L; Hu B
    Biochem Biophys Res Commun; 2010 Jul; 397(3):380-5. PubMed ID: 20510881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling.
    Adamcova M; Kawano I; Simko F
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy.
    Kemi OJ; Ceci M; Wisloff U; Grimaldi S; Gallo P; Smith GL; Condorelli G; Ellingsen O
    J Cell Physiol; 2008 Feb; 214(2):316-21. PubMed ID: 17941081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms.
    Ellison GM; Waring CD; Vicinanza C; Torella D
    Heart; 2012 Jan; 98(1):5-10. PubMed ID: 21880653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice.
    Frentzou GA; Drinkhill MJ; Turner NA; Ball SG; Ainscough JF
    Dis Model Mech; 2015 Aug; 8(8):783-94. PubMed ID: 26092119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.