BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21882664)

  • 1. Phytoremediation potential of indigenous plants from Thai Nguyen province, Vietnam.
    Anh BT; Kim DD; Tua TV; Kien NT; Anh DT
    J Environ Biol; 2011 Mar; 32(2):257-62. PubMed ID: 21882664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam.
    Nguyen TH; Sakakibara M; Sano S; Mai TN
    J Hazard Mater; 2011 Feb; 186(2-3):1384-91. PubMed ID: 21227580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of indigenous plant species for phytoremediation of metal(loid)-contaminated soil in the Baoshan mining area, China.
    Pan P; Lei M; Qiao P; Zhou G; Wan X; Chen T
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23583-23592. PubMed ID: 31203537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil.
    Boechat CL; Pistóia VC; Gianelo C; Camargo FA
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2371-80. PubMed ID: 26411450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bioaccumulation of heavy metals by the dominant plants growing in Huayuan manganese and lead/zinc mineland, Xiangxi].
    Yang SX; Tian QJ; Liang SC; Zhou YY; Zou HC
    Huan Jing Ke Xue; 2012 Jun; 33(6):2038-45. PubMed ID: 22946193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation potential of indigenous plants growing in soils affected by mine activities in Gejiu City, Yunnan Province.
    Niu X; Jia Y; Wu X; Wang S; Hou J; Zhang W
    Int J Phytoremediation; 2023; 25(7):880-888. PubMed ID: 36048899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings.
    Leung HM; Ye ZH; Wong MH
    Chemosphere; 2007 Jan; 66(5):905-15. PubMed ID: 16872660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxic metal tolerance in native plant species grown in a vanadium mining area.
    Aihemaiti A; Jiang J; Li D; Li T; Zhang W; Ding X
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26839-26850. PubMed ID: 28963601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation.
    Barbafieri M; Dadea C; Tassi E; Bretzel F; Fanfani L
    Int J Phytoremediation; 2011; 13(10):985-97. PubMed ID: 21972566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China.
    Yanqun Z; Yuan L; Jianjun C; Haiyan C; Li Q; Schvartz C
    Environ Int; 2005 Jul; 31(5):755-62. PubMed ID: 15910971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.
    Yanqun Z; Yuan L; Schvartz C; Langlade L; Fan L
    Environ Int; 2004 Jun; 30(4):567-76. PubMed ID: 15031017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.
    Bang J; Kamala-Kannan S; Lee KJ; Cho M; Kim CH; Kim YJ; Bae JH; Kim KH; Myung H; Oh BT
    Int J Phytoremediation; 2015; 17(1-6):515-20. PubMed ID: 25747237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of weed species applied to remediation of soils contaminated with heavy metals.
    Wei SH; Zhou QX; Wang X; Cao W; Ren LP; Song YF
    J Environ Sci (China); 2004; 16(5):868-73. PubMed ID: 15559831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.
    Antonkiewicz J; Para A
    Int J Phytoremediation; 2016; 18(3):245-50. PubMed ID: 26280197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and accumulation of potentially toxic elements in colonized plant species around the world's largest antimony mine area, China.
    Long J; Tan D; Deng S; Lei M
    Environ Geochem Health; 2018 Dec; 40(6):2383-2394. PubMed ID: 29644506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.
    Kumari A; Lal B; Rai UN
    Int J Phytoremediation; 2016; 18(6):592-7. PubMed ID: 26442874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionomics and metabolomics analysis reveal the molecular mechanism of metal tolerance of Pteris vittata L. dominating in a mining site in Thai Nguyen province, Vietnam.
    Nguyen NL; Bui VH; Pham HN; To HM; Dijoux-Franca MG; Vu CT; Nguyen KT
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87268-87280. PubMed ID: 35802316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Simulation and verification for model of phytoremediation on heavy metal contaminated sediment].
    Li HX; Lin WB; Li YQ; Nie YJ; Liu FJ; Zhao XH
    Huan Jing Ke Xue; 2011 Jul; 32(7):2119-24. PubMed ID: 21922840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquatic and terrestrial plant species with potential to remove heavy metals from storm-water.
    Fritioff A; Greger M
    Int J Phytoremediation; 2003; 5(3):211-24. PubMed ID: 14750429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.