BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 21883043)

  • 21. Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells.
    Martinez-Outschoorn UE; Lin Z; Ko YH; Goldberg AF; Flomenberg N; Wang C; Pavlides S; Pestell RG; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Aug; 10(15):2521-8. PubMed ID: 21768775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production.
    Capparelli C; Guido C; Whitaker-Menezes D; Bonuccelli G; Balliet R; Pestell TG; Goldberg AF; Pestell RG; Howell A; Sneddon S; Birbe R; Tsirigos A; Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Jun; 11(12):2285-302. PubMed ID: 22684298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Lin Z; Ertel A; Flomenberg N; Witkiewicz AK; Birbe RC; Howell A; Pavlides S; Gandara R; Pestell RG; Sotgia F; Philp NJ; Lisanti MP
    Cell Cycle; 2011 Jun; 10(11):1772-83. PubMed ID: 21558814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment.
    Martinez-Outschoorn UE; Trimmer C; Lin Z; Whitaker-Menezes D; Chiavarina B; Zhou J; Wang C; Pavlides S; Martinez-Cantarin MP; Capozza F; Witkiewicz AK; Flomenberg N; Howell A; Pestell RG; Caro J; Lisanti MP; Sotgia F
    Cell Cycle; 2010 Sep; 9(17):3515-33. PubMed ID: 20855962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism.
    Pavlides S; Tsirigos A; Migneco G; Whitaker-Menezes D; Chiavarina B; Flomenberg N; Frank PG; Casimiro MC; Wang C; Pestell RG; Martinez-Outschoorn UE; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Sep; 9(17):3485-505. PubMed ID: 20861672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers.
    Witkiewicz AK; Kline J; Queenan M; Brody JR; Tsirigos A; Bilal E; Pavlides S; Ertel A; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Jun; 10(11):1794-809. PubMed ID: 21521946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy.
    Benny S; Mishra R; Manojkumar MK; Aneesh TP
    Med Hypotheses; 2020 Nov; 144():110216. PubMed ID: 33254523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.
    Migneco G; Whitaker-Menezes D; Chiavarina B; Castello-Cros R; Pavlides S; Pestell RG; Fatatis A; Flomenberg N; Tsirigos A; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Jun; 9(12):2412-22. PubMed ID: 20562527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis.
    Chiavarina B; Whitaker-Menezes D; Migneco G; Martinez-Outschoorn UE; Pavlides S; Howell A; Tanowitz HB; Casimiro MC; Wang C; Pestell RG; Grieshaber P; Caro J; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Sep; 9(17):3534-51. PubMed ID: 20864819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth.
    Martinez-Outschoorn UE; Lisanti MP; Sotgia F
    Semin Cancer Biol; 2014 Apr; 25():47-60. PubMed ID: 24486645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 'Reverse Warburg effect' of cancer‑associated fibroblasts (Review).
    Liang L; Li W; Li X; Jin X; Liao Q; Li Y; Zhou Y
    Int J Oncol; 2022 Jun; 60(6):. PubMed ID: 35425996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect": a transcriptional informatics analysis with validation.
    Pavlides S; Tsirigos A; Vera I; Flomenberg N; Frank PG; Casimiro MC; Wang C; Fortina P; Addya S; Pestell RG; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Jun; 9(11):2201-19. PubMed ID: 20519932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue.
    Sotgia F; Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Philp NJ; Pestell RG; Lisanti MP
    Cell Cycle; 2012 Apr; 11(7):1445-54. PubMed ID: 22395432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling".
    Pavlides S; Tsirigos A; Vera I; Flomenberg N; Frank PG; Casimiro MC; Wang C; Pestell RG; Martinez-Outschoorn UE; Howell A; Sotgia F; Lisanti MP
    Aging (Albany NY); 2010 Apr; 2(4):185-99. PubMed ID: 20442453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autophagy, Warburg, and Warburg reverse effects in human cancer.
    Gonzalez CD; Alvarez S; Ropolo A; Rosenzvit C; Bagnes MF; Vaccaro MI
    Biomed Res Int; 2014; 2014():926729. PubMed ID: 25197670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Warburg effect in Gynecologic cancers.
    Kobayashi Y; Banno K; Kunitomi H; Takahashi T; Takeda T; Nakamura K; Tsuji K; Tominaga E; Aoki D
    J Obstet Gynaecol Res; 2019 Mar; 45(3):542-548. PubMed ID: 30511455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The autophagic tumor stroma model of cancer or "battery-operated tumor growth": A simple solution to the autophagy paradox.
    Martinez-Outschoorn UE; Whitaker-Menezes D; Pavlides S; Chiavarina B; Bonuccelli G; Casey T; Tsirigos A; Migneco G; Witkiewicz A; Balliet R; Mercier I; Wang C; Flomenberg N; Howell A; Lin Z; Caro J; Pestell RG; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Nov; 9(21):4297-306. PubMed ID: 21051947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
    Ganapathy-Kanniappan S
    Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies.
    Martinez-Outschoorn UE; Balliet R; Lin Z; Whitaker-Menezes D; Birbe RC; Bombonati A; Pavlides S; Lamb R; Sneddon S; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Dec; 11(23):4402-13. PubMed ID: 23172369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic remodeling of the tumor microenvironment: migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth.
    Carito V; Bonuccelli G; Martinez-Outschoorn UE; Whitaker-Menezes D; Caroleo MC; Cione E; Howell A; Pestell RG; Lisanti MP; Sotgia F
    Cell Cycle; 2012 Sep; 11(18):3403-14. PubMed ID: 22918248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.