These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 21883294)
1. Identification of an emulsifier and conditions for preparing stable nanoemulsions containing the antioxidant astaxanthin. Kim DM; Hyun SS; Yun P; Lee CH; Byun SY Int J Cosmet Sci; 2012 Feb; 34(1):64-73. PubMed ID: 21883294 [TBL] [Abstract][Full Text] [Related]
2. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology. Karadag A; Yang X; Ozcelik B; Huang Q J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985 [TBL] [Abstract][Full Text] [Related]
3. Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. Oh DH; Balakrishnan P; Oh YK; Kim DD; Yong CS; Choi HG Int J Pharm; 2011 Feb; 404(1-2):191-7. PubMed ID: 21055456 [TBL] [Abstract][Full Text] [Related]
4. Nanosized emulsions stabilized by semisolid polymer interphase. Nam YS; Kim JW; Shim J; Han SH; Kim HK Langmuir; 2010 Aug; 26(16):13038-43. PubMed ID: 20695538 [TBL] [Abstract][Full Text] [Related]
5. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Li PH; Chiang BH Ultrason Sonochem; 2012 Jan; 19(1):192-7. PubMed ID: 21680223 [TBL] [Abstract][Full Text] [Related]
6. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. Bai L; McClements DJ J Colloid Interface Sci; 2016 Mar; 466():206-12. PubMed ID: 26724703 [TBL] [Abstract][Full Text] [Related]
7. Development of industrially feasible concentrated 30% and 40% nanoemulsions for intravenous drug delivery. Müller RH; Harden D; Keck CM Drug Dev Ind Pharm; 2012 Apr; 38(4):420-30. PubMed ID: 22088169 [TBL] [Abstract][Full Text] [Related]
8. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature. Yu L; Li C; Xu J; Hao J; Sun D Langmuir; 2012 Oct; 28(41):14547-52. PubMed ID: 22985401 [TBL] [Abstract][Full Text] [Related]
9. Gypenosides as natural emulsifiers for oil-in-water nanoemulsions loaded with astaxanthin: Insights of formulation, stability and release properties. Chen Z; Shu G; Taarji N; Barrow CJ; Nakajima M; Khalid N; Neves MA Food Chem; 2018 Sep; 261():322-328. PubMed ID: 29739600 [TBL] [Abstract][Full Text] [Related]
10. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. Đorđević SM; Cekić ND; Savić MM; Isailović TM; Ranđelović DV; Marković BD; Savić SR; Timić Stamenić T; Daniels R; Savić SD Int J Pharm; 2015 Sep; 493(1-2):40-54. PubMed ID: 26209070 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Astaxanthin Nanoemulsions Produced by Intense Fluid Shear through a Self-Throttling Nanometer Range Annular Orifice Valve-Based High-Pressure Homogenizer. Smejkal GB; Ting EY; Nambi Arul Nambi K; Schumacher RT; Lazarev AV Molecules; 2021 May; 26(10):. PubMed ID: 34065944 [TBL] [Abstract][Full Text] [Related]
12. Optimization and characterization of the formation of oil-in-water diazinon nanoemulsions: Modeling and influence of the oil phase, surfactant and sonication. Badawy MEI; Saad ASA; Tayeb EHM; Mohammed SA; Abd-Elnabi AD J Environ Sci Health B; 2017 Dec; 52(12):896-911. PubMed ID: 29111904 [TBL] [Abstract][Full Text] [Related]
14. Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers. Shu G; Khalid N; Chen Z; Neves MA; Barrow CJ; Nakajima M Food Chem; 2018 Jul; 255():67-74. PubMed ID: 29571499 [TBL] [Abstract][Full Text] [Related]
15. Modification of composition of a nanoemulsion with different cholesteryl ester molecular species: effects on stability, peroxidation, and cell uptake. Almeida CP; Vital CG; Contente TC; Maria DA; Maranhão RC Int J Nanomedicine; 2010 Sep; 5():679-86. PubMed ID: 20957219 [TBL] [Abstract][Full Text] [Related]
16. Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin. Khalid N; Shu G; Holland BJ; Kobayashi I; Nakajima M; Barrow CJ Food Res Int; 2017 Dec; 102():364-371. PubMed ID: 29195960 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization. Yi B; Kim MJ; Lee J J Food Sci; 2018 Mar; 83(3):589-596. PubMed ID: 29412454 [TBL] [Abstract][Full Text] [Related]
18. Thermal Degradation and Isomerization of β-Carotene in Oil-in-Water Nanoemulsions Supplemented with Natural Antioxidants. Yi J; Fan Y; Yokoyama W; Zhang Y; Zhao L J Agric Food Chem; 2016 Mar; 64(9):1970-6. PubMed ID: 26881704 [TBL] [Abstract][Full Text] [Related]
19. Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios. Ma P; Zeng Q; Tai K; He X; Yao Y; Hong X; Yuan F J Food Sci Technol; 2018 Sep; 55(9):3485-3497. PubMed ID: 30150807 [TBL] [Abstract][Full Text] [Related]
20. Emulsifying conditions and processing parameters optimisation of kenaf seed oil-in-water nanoemulsions stabilised by ternary emulsifier mixtures. Cheong AM; Tan CP; Nyam KL Food Sci Technol Int; 2018 Jul; 24(5):404-413. PubMed ID: 29466882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]