These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21884365)

  • 41. Assimilatory reduction of sulfate and sulfite by methanogenic bacteria.
    Daniels L; Belay N; Rajagopal BS
    Appl Environ Microbiol; 1986 Apr; 51(4):703-9. PubMed ID: 3707121
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction of produced elementary sulfur in denitrifying sulfide removal process.
    Zhou X; Liu L; Chen C; Ren N; Wang A; Lee DJ
    Appl Microbiol Biotechnol; 2011 May; 90(3):1129-36. PubMed ID: 21286712
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense.
    Geelhoed JS; Kleerebezem R; Sorokin DY; Stams AJ; van Loosdrecht MC
    Environ Microbiol; 2010 Apr; 12(4):1031-40. PubMed ID: 20105221
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Archean sulfur cycle and the early history of atmospheric oxygen.
    Canfield DE; Habicht KS; Thamdrup B
    Science; 2000 Apr; 288(5466):658-61. PubMed ID: 10784446
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds.
    Madrid VM; Aller RC; Aller JY; Chistoserdov AY
    FEMS Microbiol Ecol; 2006 Aug; 57(2):169-81. PubMed ID: 16867136
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques.
    Gonzalez-Sanchez A; Tomas M; Dorado AD; Gamisans X; Guisasola A; Lafuente J; Gabriel D
    Water Sci Technol; 2009; 59(7):1323-9. PubMed ID: 19380997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds.
    Fry B; Cox J; Gest H; Hayes JM
    J Bacteriol; 1986 Jan; 165(1):328-30. PubMed ID: 3941049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Patterns of sulfur isotope fractionation during microbial sulfate reduction.
    Bradley AS; Leavitt WD; Schmidt M; Knoll AH; Girguis PR; Johnston DT
    Geobiology; 2016 Jan; 14(1):91-101. PubMed ID: 26189479
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thiosulfate Oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense.
    Anandham R; Indiragandhi P; Madhaiyan M; Chung J; Ryu KY; Jee HJ; Sa T
    J Microbiol Biotechnol; 2009 Jan; 19(1):17-22. PubMed ID: 19190404
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur.
    Frederiksen TM; Finster K
    Biodegradation; 2003 Jun; 14(3):189-98. PubMed ID: 12889609
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Early Archaean microorganisms preferred elemental sulfur, not sulfate.
    Philippot P; Van Zuilen M; Lepot K; Thomazo C; Farquhar J; Van Kranendonk MJ
    Science; 2007 Sep; 317(5844):1534-7. PubMed ID: 17872441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ S-isotope compositions of sulfate and sulfide from the 3.2 Ga Moodies Group, South Africa: A record of oxidative sulfur cycling.
    Nabhan S; Marin-Carbonne J; Mason PRD; Heubeck C
    Geobiology; 2020 Jul; 18(4):426-444. PubMed ID: 32301171
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans.
    Chambers LA; Trudinger PA; Smith JW; Burns MS
    Can J Microbiol; 1975 Oct; 21(10):1602-7. PubMed ID: 1201506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulfur isotope fractionation during SO3(2-) reduction by different clostridial species.
    Laishley EJ; Tyler MG; Krouse HR
    Can J Microbiol; 1984 Jun; 30(6):841-4. PubMed ID: 6091857
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stable sulfur and oxygen isotope fractionation of anoxic sulfide oxidation by two different enzymatic pathways.
    Poser A; Vogt C; Knöller K; Ahlheim J; Weiss H; Kleinsteuber S; Richnow HH
    Environ Sci Technol; 2014 Aug; 48(16):9094-102. PubMed ID: 25003498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.
    Leavitt WD; Bradley AS; Santos AA; Pereira IA; Johnston DT
    Front Microbiol; 2015; 6():1392. PubMed ID: 26733949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sulfur isotope fractionation during the evolutionary adaptation of a sulfate-reducing bacterium.
    Pellerin A; Anderson-Trocmé L; Whyte LG; Zane GM; Wall JD; Wing BA
    Appl Environ Microbiol; 2015 Apr; 81(8):2676-89. PubMed ID: 25662968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea.
    Ghosh W; Dam B
    FEMS Microbiol Rev; 2009 Nov; 33(6):999-1043. PubMed ID: 19645821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Explaining the structure of the Archean mass-independent sulfur isotope record.
    Halevy I; Johnston DT; Schrag DP
    Science; 2010 Jul; 329(5988):204-7. PubMed ID: 20508089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sulphur and carbon isotope fractionation by Salmonella heidelberg during anaerobic SO3= reduction in trypticase soy broth medium.
    Krouse HR; Sasaki A
    Can J Microbiol; 1968 Apr; 14(4):417-22. PubMed ID: 5646842
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.