BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 21884691)

  • 1. Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae).
    Uhlig C; Kabisch J; Palm GJ; Valentin K; Schweder T; Krell A
    Cryobiology; 2011 Dec; 63(3):220-8. PubMed ID: 21884691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice.
    Bayer-Giraldi M; Weikusat I; Besir H; Dieckmann G
    Cryobiology; 2011 Dec; 63(3):210-9. PubMed ID: 21906587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis.
    Bayer-Giraldi M; Uhlig C; John U; Mock T; Valentin K
    Environ Microbiol; 2010 Apr; 12(4):1041-52. PubMed ID: 20105220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis.
    Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T
    FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL
    Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30.
    Park KS; Do H; Lee JH; Park SI; Kim Ej; Kim SJ; Kang SH; Kim HJ
    Cryobiology; 2012 Jun; 64(3):286-96. PubMed ID: 22426061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE; Walker VK
    Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium.
    Gilbert JA; Davies PL; Laybourn-Parry J
    FEMS Microbiol Lett; 2005 Apr; 245(1):67-72. PubMed ID: 15796981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and characterization of an antifreeze protein from the perennial rye grass, Lolium perenne.
    Lauersen KJ; Brown A; Middleton A; Davies PL; Walker VK
    Cryobiology; 2011 Jun; 62(3):194-201. PubMed ID: 21457707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity.
    Can O; Holland NB
    Bioconjug Chem; 2011 Oct; 22(10):2166-71. PubMed ID: 21905742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R; Celik Y; Davies PL; Braslavsky I
    J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annealing condition influences thermal hysteresis of fungal type ice-binding proteins.
    Xiao N; Hanada Y; Seki H; Kondo H; Tsuda S; Hoshino T
    Cryobiology; 2014 Feb; 68(1):159-61. PubMed ID: 24201106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function relationships in spruce budworm antifreeze protein revealed by isoform diversity.
    Doucet D; Tyshenko MG; Kuiper MJ; Graether SP; Sykes BD; Daugulis AJ; Davies PL; Walker VK
    Eur J Biochem; 2000 Oct; 267(19):6082-8. PubMed ID: 10998070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a novel β-helix antifreeze protein from the desert beetle Anatolica polita.
    Mao X; Liu Z; Ma J; Pang H; Zhang F
    Cryobiology; 2011 Apr; 62(2):91-9. PubMed ID: 21232534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, purification, and antifreeze activity of carrot antifreeze protein and its mutants.
    Zhang DQ; Liu B; Feng DR; He YM; Wang JF
    Protein Expr Purif; 2004 Jun; 35(2):257-63. PubMed ID: 15135400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.