These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21884822)

  • 41. Protein-protein interaction extraction with feature selection by evaluating contribution levels of groups consisting of related features.
    Thuy Phan TT; Ohkawa T
    BMC Bioinformatics; 2016 Jul; 17 Suppl 7(Suppl 7):246. PubMed ID: 27454611
    [TBL] [Abstract][Full Text] [Related]  

  • 42. D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data.
    Hugo W; Ng SK; Sung WK
    J Proteome Res; 2011 Dec; 10(12):5285-95. PubMed ID: 22004555
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-way association extraction and visualization from biological text documents using hyper-graphs: applications to genetic association studies for diseases.
    Mukhopadhyay S; Palakal M; Maddu K
    Artif Intell Med; 2010 Jul; 49(3):145-54. PubMed ID: 20382004
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large-scale prediction of human protein-protein interactions from amino acid sequence based on latent topic features.
    Pan XY; Zhang YN; Shen HB
    J Proteome Res; 2010 Oct; 9(10):4992-5001. PubMed ID: 20698572
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A mouse protein interactome through combined literature mining with multiple sources of interaction evidence.
    Li X; Cai H; Xu J; Ying S; Zhang Y
    Amino Acids; 2010 Apr; 38(4):1237-52. PubMed ID: 19669079
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extracting protein interactions from text with the unified AkaneRE event extraction system.
    Saetre R; Yoshida K; Miwa M; Matsuzaki T; Kano Y; Tsujii J
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(3):442-53. PubMed ID: 20671316
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic extraction of protein-protein interactions using grammatical relationship graph.
    Yu K; Lung PY; Zhao T; Zhao P; Tseng YY; Zhang J
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):42. PubMed ID: 30066644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient extraction of protein-protein interactions from full-text articles.
    Hakenberg J; Leaman R; Vo NH; Jonnalagadda S; Sullivan R; Miller C; Tari L; Baral C; Gonzalez G
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(3):481-94. PubMed ID: 20498514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Learning protein secondary structure from sequential and relational data.
    Ceroni A; Frasconi P; Pollastri G
    Neural Netw; 2005 Oct; 18(8):1029-39. PubMed ID: 16182513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Semi-supervised learning of the hidden vector state model for extracting protein-protein interactions.
    Zhou D; He Y; Kwoh CK
    Artif Intell Med; 2007 Nov; 41(3):209-22. PubMed ID: 17702552
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visualisation and navigation methods for typed protein-protein interaction networks.
    Friedrich C; Schreiber F
    Appl Bioinformatics; 2003; 2(3 Suppl):S19-24. PubMed ID: 15130812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SCOWLP: a web-based database for detailed characterization and visualization of protein interfaces.
    Teyra J; Doms A; Schroeder M; Pisabarro MT
    BMC Bioinformatics; 2006 Mar; 7():104. PubMed ID: 16512892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards Extracting Supporting Information About Predicted Protein-Protein Interactions.
    Roth A; Subramanian S; Ganapathiraju MK
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1239-1246. PubMed ID: 26672046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An approach to improve kernel-based Protein-Protein Interaction extraction by learning from large-scale network data.
    Li L; Guo R; Jiang Z; Huang D
    Methods; 2015 Jul; 83():44-50. PubMed ID: 25864936
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Querying graphs in protein-protein interactions networks using feedback vertex set.
    Blin G; Sikora F; Vialette S
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):628-35. PubMed ID: 20498512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An unsupervised text mining method for relation extraction from biomedical literature.
    Quan C; Wang M; Ren F
    PLoS One; 2014; 9(7):e102039. PubMed ID: 25036529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Graph kernels for disease outcome prediction from protein-protein interaction networks.
    Borgwardt KM; Kriegel HP; Vishwanathan SV; Schraudolph NN
    Pac Symp Biocomput; 2007; ():4-15. PubMed ID: 17992741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature.
    Zhang Y; Wu HY; Xu J; Wang J; Soysal E; Li L; Xu H
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):67. PubMed ID: 27585838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A hybrid model based on neural networks for biomedical relation extraction.
    Zhang Y; Lin H; Yang Z; Wang J; Zhang S; Sun Y; Yang L
    J Biomed Inform; 2018 May; 81():83-92. PubMed ID: 29601989
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extracting biomedical relation from cross-sentence text using syntactic dependency graph attention network.
    Zhou X; Fu Q; Chen J; Liu L; Wang Y; Lu Y; Wu H
    J Biomed Inform; 2023 Aug; 144():104445. PubMed ID: 37467835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.