BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21885086)

  • 1. Atmospheric fate of non-volatile and ionizable compounds.
    Franco A; Hauschild M; Jolliet O; Trapp S
    Chemosphere; 2011 Nov; 85(8):1353-9. PubMed ID: 21885086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning and removal of perfluorooctanoate during rain events: the importance of physical-chemical properties.
    Barton CA; Kaiser MA; Russell MH
    J Environ Monit; 2007 Aug; 9(8):839-46. PubMed ID: 17671665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the influence of intermittent rain events on long-term fate and transport of organic air pollutants.
    Jolliet O; Hauschild M
    Environ Sci Technol; 2005 Jun; 39(12):4513-22. PubMed ID: 16047788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modelling assessment of the atmospheric fate of volatile methyl siloxanes and their reaction products.
    Whelan MJ; Estrada E; van Egmond R
    Chemosphere; 2004 Dec; 57(10):1427-37. PubMed ID: 15519387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotopes of volatile organic compounds: an emerging approach for studying atmospheric budgets and chemistry.
    Goldstein AH; Shaw SL
    Chem Rev; 2003 Dec; 103(12):5025-48. PubMed ID: 14664642
    [No Abstract]   [Full Text] [Related]  

  • 7. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.
    Donaldson DJ; Valsaraj KT
    Environ Sci Technol; 2010 Feb; 44(3):865-73. PubMed ID: 20058916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.
    Bao Z; Haberer C; Maier U; Beckingham B; Amos RT; Grathwohl P
    Sci Total Environ; 2015 Dec; 538():789-801. PubMed ID: 26340582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remoteness from sources of persistent organic pollutants in the multi-media global environment.
    Göktaş RK; MacLeod M
    Environ Pollut; 2016 Oct; 217():33-41. PubMed ID: 26775726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases.
    van Zelm R; Stam G; Huijbregts MA; van de Meent D
    Chemosphere; 2013 Jan; 90(2):312-7. PubMed ID: 22884491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-based concept for transport and partitioning of ionizing organics.
    Trapp S; Franco A; Mackay D
    Environ Sci Technol; 2010 Aug; 44(16):6123-9. PubMed ID: 20704208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimedia environmental chemical partitioning from molecular information.
    Martínez I; Grifoll J; Giralt F; Rallo R
    Sci Total Environ; 2010 Dec; 409(2):412-22. PubMed ID: 21059471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere.
    Nizzetto L; Perlinger JA
    Environ Sci Technol; 2012 Mar; 46(5):2699-707. PubMed ID: 22304464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic.1) Part I. Ambient air and wet deposition 1996-2005.
    Holoubek I; Klánová J; Jarkovský J; Kohoutek J
    J Environ Monit; 2007 Jun; 9(6):557-63. PubMed ID: 17554427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate and transport of monoterpenes through soils. Part I. Prediction of temperature dependent soil fate model input-parameters.
    van Roon A; Parsons JR; te Kloeze AM; Govers HA
    Chemosphere; 2005 Nov; 61(5):599-609. PubMed ID: 16219497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic atmospheric particulate material.
    Seinfeld JH; Pankow JF
    Annu Rev Phys Chem; 2003; 54():121-40. PubMed ID: 12524426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the heterogeneous conversion of 1,4-hydroxycarbonyls to cyclic hemiacetals and dihydrofurans on organic aerosol particles.
    Lim YB; Ziemann PJ
    Phys Chem Chem Phys; 2009 Sep; 11(36):8029-39. PubMed ID: 19727510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric transport of persistent organic pollutants (POPs) to Bjørnøya (Bear island).
    Kallenborn R; Christensen G; Evenset A; Schlabach M; Stohl A
    J Environ Monit; 2007 Oct; 9(10):1082-91. PubMed ID: 17909642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do hydroxyl radical-water clusters, OH(H2O)n, n = 1-5, exist in the atmosphere?
    Allodi MA; Dunn ME; Livada J; Kirschner KN; Shields GC
    J Phys Chem A; 2006 Dec; 110(49):13283-9. PubMed ID: 17149847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: rates of reaction with atmospheric oxidants, air-water partitioning, and wet/dry deposition lifetimes.
    Rayne S; Forest K; Friesen KJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Aug; 44(10):936-54. PubMed ID: 19827486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.