BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21885144)

  • 21. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
    Yan H; Dai JR
    J Appl Clin Med Phys; 2016 Mar; 17(2):174-193. PubMed ID: 27074482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment.
    Künzler T; Grezdo J; Bogner J; Birkfellner W; Georg D
    Phys Med Biol; 2007 Apr; 52(8):2157-70. PubMed ID: 17404461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Registration of clinical volumes to beams-eye-view images for real-time tracking.
    Bryant JH; Rottmann J; Lewis JH; Mishra P; Keall PJ; Berbeco RI
    Med Phys; 2014 Dec; 41(12):121703. PubMed ID: 25471950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An assessment of cone beam CT in the adaptive radiotherapy planning process for non-small-cell lung cancer patients.
    Duffton A; Harrow S; Lamb C; McJury M
    Br J Radiol; 2016 Jun; 89(1062):20150492. PubMed ID: 27052681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time respiration monitoring using the radiotherapy treatment beam and four-dimensional computed tomography (4DCT)--a conceptual study.
    Lu W; Ruchala KJ; Chen ML; Chen Q; Olivera GH
    Phys Med Biol; 2006 Sep; 51(18):4469-95. PubMed ID: 16953038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Planning lung radiotherapy using 4D CT data and a motion model.
    Colgan R; McClelland J; McQuaid D; Evans PM; Hawkes D; Brock J; Landau D; Webb S
    Phys Med Biol; 2008 Oct; 53(20):5815-30. PubMed ID: 18827322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of organ motion based on an adaptive image-based scale invariant feature method.
    Paganelli C; Peroni M; Baroni G; Riboldi M
    Med Phys; 2013 Nov; 40(11):111701. PubMed ID: 24320409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Four-dimensional computed tomography: image formation and clinical protocol.
    Rietzel E; Pan T; Chen GT
    Med Phys; 2005 Apr; 32(4):874-89. PubMed ID: 15895570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dosimetric advantages of four-dimensional adaptive image-guided radiotherapy for lung tumors using online cone-beam computed tomography.
    Harsolia A; Hugo GD; Kestin LL; Grills IS; Yan D
    Int J Radiat Oncol Biol Phys; 2008 Feb; 70(2):582-9. PubMed ID: 18207034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy.
    Robertson SP; Weiss E; Hugo GD
    Med Phys; 2012 Jan; 39(1):330-41. PubMed ID: 22225303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Digital fluoroscopy to quantify lung tumor motion: potential for patient-specific planning target volumes.
    Sixel KE; Ruschin M; Tirona R; Cheung PC
    Int J Radiat Oncol Biol Phys; 2003 Nov; 57(3):717-23. PubMed ID: 14529776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel markerless technique to evaluate daily lung tumor motion based on conventional cone-beam CT projection data.
    Yang Y; Zhong Z; Guo X; Wang J; Anderson J; Solberg T; Mao W
    Int J Radiat Oncol Biol Phys; 2012 Apr; 82(5):e749-56. PubMed ID: 22330989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving image-guided radiation therapy of lung cancer by reconstructing 4D-CT from a single free-breathing 3D-CT on the treatment day.
    Wu G; Lian J; Shen D
    Med Phys; 2012 Dec; 39(12):7694-709. PubMed ID: 23231317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical validation of a 4D-CT based method for lung ventilation measurement in phantoms and patients.
    Nyeng TB; Kallehauge JF; Høyer M; Petersen JB; Poulsen PR; Muren LP
    Acta Oncol; 2011 Aug; 50(6):897-907. PubMed ID: 21767190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A robust technique for 2D-3D registration.
    Gong RH; Abolmaesumi P; Stewart J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1433-6. PubMed ID: 17945644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of rigid and adaptive methods of propagating gross tumor volume through respiratory phases of four-dimensional computed tomography image data set.
    Ezhil M; Choi B; Starkschall G; Bucci MK; Vedam S; Balter P
    Int J Radiat Oncol Biol Phys; 2008 May; 71(1):290-6. PubMed ID: 18406893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.
    Bradley J; Thorstad WL; Mutic S; Miller TR; Dehdashti F; Siegel BA; Bosch W; Bertrand RJ
    Int J Radiat Oncol Biol Phys; 2004 May; 59(1):78-86. PubMed ID: 15093902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extraction of tumor motion trajectories using PICCS-4DCBCT: a validation study.
    Qi Z; Chen GH
    Med Phys; 2011 Oct; 38(10):5530-8. PubMed ID: 21992371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cine computed tomography without respiratory surrogate in planning stereotactic radiotherapy for non-small-cell lung cancer.
    Riegel AC; Chang JY; Vedam SS; Johnson V; Chi PC; Pan T
    Int J Radiat Oncol Biol Phys; 2009 Feb; 73(2):433-41. PubMed ID: 18644683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel four-dimensional radiotherapy method for lung cancer: imaging, treatment planning and delivery.
    Alasti H; Cho YB; Vandermeer AD; Abbas A; Norrlinger B; Shubbar S; Bezjak A
    Phys Med Biol; 2006 Jun; 51(12):3251-67. PubMed ID: 16757875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.