These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 21885800)

  • 1. Local control of skeletal muscle blood flow during exercise: influence of available oxygen.
    Casey DP; Joyner MJ
    J Appl Physiol (1985); 2011 Dec; 111(6):1527-38. PubMed ID: 21885800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle blood flow, hypoxia, and hypoperfusion.
    Joyner MJ; Casey DP
    J Appl Physiol (1985); 2014 Apr; 116(7):852-7. PubMed ID: 23887898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand.
    Casey DP; Joyner MJ
    J Physiol; 2012 Dec; 590(24):6321-6. PubMed ID: 22988134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of ATP/UTP-selective receptors increases blood flow and blunts sympathetic vasoconstriction in human skeletal muscle.
    Rosenmeier JB; Yegutkin GG; González-Alonso J
    J Physiol; 2008 Oct; 586(20):4993-5002. PubMed ID: 18703581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostaglandins do not contribute to the nitric oxide-mediated compensatory vasodilation in hypoperfused exercising muscle.
    Casey DP; Joyner MJ
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H261-8. PubMed ID: 21536852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle vasodilation during systemic hypoxia in humans.
    Dinenno FA
    J Appl Physiol (1985); 2016 Jan; 120(2):216-25. PubMed ID: 26023228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of adenosine to compensatory dilation in hypoperfused contracting human muscles is independent of nitric oxide.
    Casey DP; Joyner MJ
    J Appl Physiol (1985); 2011 May; 110(5):1181-9. PubMed ID: 21292838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins.
    Crecelius AR; Kirby BS; Voyles WF; Dinenno FA
    J Physiol; 2011 Jul; 589(Pt 14):3671-83. PubMed ID: 21624968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia.
    Heinonen IH; Kemppainen J; Kaskinoro K; Peltonen JE; Borra R; Lindroos M; Oikonen V; Nuutila P; Knuuti J; Boushel R; Kalliokoski KK
    Am J Physiol Regul Integr Comp Physiol; 2010 Jul; 299(1):R72-9. PubMed ID: 20427728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle blood flow responses to hypoperfusion at rest and during rhythmic exercise in humans.
    Casey DP; Joyner MJ
    J Appl Physiol (1985); 2009 Aug; 107(2):429-37. PubMed ID: 19520838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disparity in regional and systemic circulatory capacities: do they affect the regulation of the circulation?
    Calbet JA; Joyner MJ
    Acta Physiol (Oxf); 2010 Aug; 199(4):393-406. PubMed ID: 20345408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle.
    Rosenmeier JB; Hansen J; González-Alonso J
    J Physiol; 2004 Jul; 558(Pt 1):351-65. PubMed ID: 15155791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.
    Casey DP; Madery BD; Pike TL; Eisenach JH; Dietz NM; Joyner MJ; Wilkins BW
    J Appl Physiol (1985); 2009 Oct; 107(4):1128-37. PubMed ID: 19661449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide-mediated vasodilation becomes independent of beta-adrenergic receptor activation with increased intensity of hypoxic exercise.
    Casey DP; Curry TB; Wilkins BW; Joyner MJ
    J Appl Physiol (1985); 2011 Mar; 110(3):687-94. PubMed ID: 21193565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise.
    Schrage WG; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 2006 May; 100(5):1506-12. PubMed ID: 16469932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle blood flow in humans and its regulation during exercise.
    Saltin B; Rådegran G; Koskolou MD; Roach RC
    Acta Physiol Scand; 1998 Mar; 162(3):421-36. PubMed ID: 9578388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two weeks of muscle immobilization impairs functional sympatholysis but increases exercise hyperemia and the vasodilatory responsiveness to infused ATP.
    Mortensen SP; Mørkeberg J; Thaning P; Hellsten Y; Saltin B
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2074-82. PubMed ID: 22408019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelium-dependent vasodilatory signalling modulates α
    Hearon CM; Kirby BS; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2016 Dec; 594(24):7435-7453. PubMed ID: 27561916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise.
    Casey DP; Madery BD; Curry TB; Eisenach JH; Wilkins BW; Joyner MJ
    J Physiol; 2010 Jan; 588(Pt 2):373-85. PubMed ID: 19948661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.
    Joyner MJ; Casey DP
    Physiol Rev; 2015 Apr; 95(2):549-601. PubMed ID: 25834232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.