These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21885802)

  • 1. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample.
    Freedson PS; Lyden K; Kozey-Keadle S; Staudenmayer J
    J Appl Physiol (1985); 2011 Dec; 111(6):1804-12. PubMed ID: 21885802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer.
    Staudenmayer J; Pober D; Crouter S; Bassett D; Freedson P
    J Appl Physiol (1985); 2009 Oct; 107(4):1300-7. PubMed ID: 19644028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method to estimate free-living active and sedentary behavior from an accelerometer.
    Lyden K; Keadle SK; Staudenmayer J; Freedson PS
    Med Sci Sports Exerc; 2014 Feb; 46(2):386-97. PubMed ID: 23860415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural networks to predict activity type and energy expenditure in youth.
    Trost SG; Wong WK; Pfeiffer KA; Zheng Y
    Med Sci Sports Exerc; 2012 Sep; 44(9):1801-9. PubMed ID: 22525766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the Validity and Generalizability of Machine Learning Algorithms for the Prediction of Energy Expenditure: Validation Study.
    O'Driscoll R; Turicchi J; Hopkins M; Duarte C; Horgan GW; Finlayson G; Stubbs RJ
    JMIR Mhealth Uhealth; 2021 Aug; 9(8):e23938. PubMed ID: 34346890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction models discriminating between nonlocomotive and locomotive activities in children using a triaxial accelerometer with a gravity-removal physical activity classification algorithm.
    Hikihara Y; Tanaka C; Oshima Y; Ohkawara K; Ishikawa-Takata K; Tanaka S
    PLoS One; 2014; 9(4):e94940. PubMed ID: 24755646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation and calibration of the activPAL™ for estimating METs and physical activity in 4-6 year olds.
    Janssen X; Cliff DP; Reilly JJ; Hinkley T; Jones RA; Batterham M; Ekelund U; Brage S; Okely AD
    J Sci Med Sport; 2014 Nov; 17(6):602-6. PubMed ID: 24289913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of activity type in preschool children using machine learning techniques.
    Hagenbuchner M; Cliff DP; Trost SG; Van Tuc N; Peoples GE
    J Sci Med Sport; 2015 Jul; 18(4):426-31. PubMed ID: 25088983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study.
    Davoudi A; Wanigatunga AA; Kheirkhahan M; Corbett DB; Mendoza T; Battula M; Ranka S; Fillingim RB; Manini TM; Rashidi P
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11270. PubMed ID: 30724739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.
    Choi L; Chen KY; Acra SA; Buchowski MS
    J Appl Physiol (1985); 2010 Feb; 108(2):314-27. PubMed ID: 19959770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing ActiGraph equations for estimating energy expenditure in older adults.
    Aguilar-Farias N; Peeters GMEEG; Brychta RJ; Chen KY; Brown WJ
    J Sports Sci; 2019 Jan; 37(2):188-195. PubMed ID: 29912666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different prediction models for estimation of walking and running energy expenditure based on a wristwear three-axis accelerometer.
    Xu L; Zhang J; Li Z; Liu Y; Jia Z; Han X; Liu C; Zhou Z
    Front Physiol; 2023; 14():1202737. PubMed ID: 38028785
    [No Abstract]   [Full Text] [Related]  

  • 15. Refined two-regression model for the ActiGraph accelerometer.
    Crouter SE; Kuffel E; Haas JD; Frongillo EA; Bassett DR
    Med Sci Sports Exerc; 2010 May; 42(5):1029-37. PubMed ID: 20400882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the activPAL accelerometer for physical activity and energy expenditure estimation in a semi-structured setting.
    Montoye AHK; Pivarnik JM; Mudd LM; Biswas S; Pfeiffer KA
    J Sci Med Sport; 2017 Nov; 20(11):1003-1007. PubMed ID: 28483558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating metabolic equivalents for activities in daily life using acceleration and heart rate in wearable devices.
    Nakanishi M; Izumi S; Nagayoshi S; Kawaguchi H; Yoshimoto M; Shiga T; Ando T; Nakae S; Usui C; Aoyama T; Tanaka S
    Biomed Eng Online; 2018 Jul; 17(1):100. PubMed ID: 30055617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of the Actical for estimating free-living physical activity.
    Crouter SE; Dellavalle DM; Horton M; Haas JD; Frongillo EA; Bassett DR
    Eur J Appl Physiol; 2011 Jul; 111(7):1381-9. PubMed ID: 21153659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Physical Activity Intensity in Spinal Cord Injury Using a Wrist-Worn ActiGraph Monitor.
    Veerubhotla A; Hong E; Knezevic S; Spungen A; Ding D
    Arch Phys Med Rehabil; 2020 Sep; 101(9):1563-1569. PubMed ID: 32502566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.