These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21886208)

  • 1. Femtosecond and nanosecond laser fabricated substrate for surface-enhanced Raman scattering.
    Hamdorf A; Olson M; Lin CH; Jiang L; Zhou J; Xiao H; Tsai HL
    Opt Lett; 2011 Sep; 36(17):3353-5. PubMed ID: 21886208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering.
    Lin CH; Jiang L; Zhou J; Xiao H; Chen SJ; Tsai HL
    Opt Lett; 2010 Apr; 35(7):941-3. PubMed ID: 20364177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering.
    Jiang L; Ying D; Li X; Lu Y
    Opt Lett; 2012 Sep; 37(17):3648-50. PubMed ID: 22940978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering microchip fabricated by femtosecond laser.
    Lin CH; Jiang L; Xiao H; Chen SJ; Tsai HL
    Opt Lett; 2010 Sep; 35(17):2937-9. PubMed ID: 20808375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering.
    Chang HW; Tsai YC; Cheng CW; Lin CY; Lin YW; Wu TM
    J Colloid Interface Sci; 2011 Aug; 360(1):305-8. PubMed ID: 21546031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering.
    Qian C; Ni C; Yu W; Wu W; Mao H; Wang Y; Xu J
    Small; 2011 Jul; 7(13):1800-6. PubMed ID: 21608122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond double-pulse fabrication of hierarchical nanostructures based on electron dynamics control for high surface-enhanced Raman scattering.
    Zhang N; Li X; Jiang L; Shi X; Li C; Lu Y
    Opt Lett; 2013 Sep; 38(18):3558-61. PubMed ID: 24104813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering.
    Lin CH; Jiang L; Chai YH; Xiao H; Chen SJ; Tsai HL
    Opt Express; 2009 Nov; 17(24):21581-9. PubMed ID: 19997399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies.
    Chu Y; Banaee MG; Crozier KB
    ACS Nano; 2010 May; 4(5):2804-10. PubMed ID: 20429521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry.
    De Jesús MA; Giesfeldt KS; Oran JM; Abu-Hatab NA; Lavrik NV; Sepaniak MJ
    Appl Spectrosc; 2005 Dec; 59(12):1501-8. PubMed ID: 16390590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reusable surface-enhanced Raman scattering (SERS) substrate prepared by atomic layer deposition of alumina on a multi-layer gold and silver film.
    Mahurin SM; John J; Sepaniak MJ; Dai S
    Appl Spectrosc; 2011 Apr; 65(4):417-22. PubMed ID: 21396189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering.
    Diebold ED; Mack NH; Doorn SK; Mazur E
    Langmuir; 2009 Feb; 25(3):1790-4. PubMed ID: 19133764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanopillar arrays with nanoparticles fabricated by a femtosecond laser pulse train for highly sensitive SERRS.
    Yang Q; Li X; Jiang L; Zhang N; Zhang G; Shi X; Zhang K; Hu J; Lu Y
    Opt Lett; 2015 May; 40(9):2045-8. PubMed ID: 25927780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles.
    Rout CS; Kumar A; Fisher TS
    Nanotechnology; 2011 Sep; 22(39):395704. PubMed ID: 21896979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates.
    Li Z; Tong WM; Stickle WF; Neiman DL; Williams RS; Hunter LL; Talin AA; Li D; Brueck SR
    Langmuir; 2007 Apr; 23(9):5135-8. PubMed ID: 17385901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical fabrication of two-dimensional palladium nanostructures as substrates for surface enhanced Raman scattering.
    Li Y; Lu G; Wu X; Shi G
    J Phys Chem B; 2006 Dec; 110(48):24585-92. PubMed ID: 17134219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength-scanned surface-enhanced Raman excitation spectroscopy.
    McFarland AD; Young MA; Dieringer JA; Van Duyne RP
    J Phys Chem B; 2005 Jun; 109(22):11279-85. PubMed ID: 16852377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of surface enhanced Raman scattering on the plasmonic template periodicity.
    Mandal P; Ramakrishna SA
    Opt Lett; 2011 Sep; 36(18):3705-7. PubMed ID: 21931439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.