These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 21886229)

  • 1. Theoretical study on photonic devices based on a commensurate two-pattern photonic crystal.
    Jia L; Thomas EL
    Opt Lett; 2011 Sep; 36(17):3416-8. PubMed ID: 21886229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete photonic bandgap in silicon nitride slab assisted by effective index difference between polarizations.
    Ma C; Hou J; Yang C; Shi M; Chen S
    Front Optoelectron; 2022 May; 15(1):20. PubMed ID: 36637546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TM and TE propagating modes of photonic crystal waveguide based on honeycomb lattices.
    Mao H; Wang J; Yu K; Zhu Z
    Appl Opt; 2010 Dec; 49(34):6597-601. PubMed ID: 21124536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-collimating photonic crystal antireflection structure for both TE and TM polarizations.
    Park JM; Lee SG; Park HR; Lee MH
    Opt Express; 2010 Jun; 18(12):13083-93. PubMed ID: 20588438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of photonic band structure in a one-dimensional photonic crystal containing single-negative materials.
    Yeh DW; Wu CJ
    Opt Express; 2009 Sep; 17(19):16666-80. PubMed ID: 19770882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers.
    Sun P; Reano RM
    Opt Express; 2011 Feb; 19(5):4722-7. PubMed ID: 21369303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelength selective filter based on polarization control in a photonic bandgap structure with a defect.
    Andres-Arroyo A; Reece PJ; Johnson CM; Vora K; Karouta F; Jagadish C
    Opt Express; 2011 Dec; 19(25):25643-50. PubMed ID: 22273957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions.
    Hwang J; Song MH; Park B; Nishimura S; Toyooka T; Wu JW; Takanishi Y; Ishikawa K; Takezoe H
    Nat Mater; 2005 May; 4(5):383-7. PubMed ID: 15852019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-periodic 1D photonic crystals for designing the photonic optical devices operating in the infrared regime.
    Panyaev IS; Sannikov DG; Dadoenkova NN; Dadoenkova YS
    Appl Opt; 2021 Mar; 60(7):1943-1952. PubMed ID: 33690285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultracompact photonic crystal polarization beam splitter based on multimode interference.
    Lu MF; Liao SM; Huang YT
    Appl Opt; 2010 Feb; 49(4):724-31. PubMed ID: 20119026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures.
    Burrow GM; Leibovici MC; Gaylord TK
    Appl Opt; 2012 Jun; 51(18):4028-41. PubMed ID: 22722277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional control of light in a two-dimensional photonic crystal slab.
    Chow E; Lin SY; Johnson SG; Villeneuve PR; Joannopoulos JD; Wendt JR; Vawter GA; Zubrzycki W; Hou H; Alleman A
    Nature; 2000 Oct; 407(6807):983-6. PubMed ID: 11069173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source transformation device formed by one-dimensional photonic crystal.
    Yogesh N; Subramanian V
    Opt Lett; 2011 May; 36(9):1737-9. PubMed ID: 21540986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic-crystal structures with polarized-wave-guiding property and their applications in the mid and far infrared wave bands.
    Jin X; Sesay M; Ouyang Z; Liu Q; Lin M; Tao K; Zhang D
    Opt Express; 2013 Oct; 21(21):25592-606. PubMed ID: 24150399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip optical filters with designable characteristics based on an interferometer with embedded silicon photonic structures.
    Kocaman S; Aras MS; Panoiu NC; Lu M; Wong CW
    Opt Lett; 2012 Feb; 37(4):665-7. PubMed ID: 22344141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband one-dimensional photonic crystal wave plate containing single-negative materials.
    Chen Y
    Opt Express; 2010 Sep; 18(19):19920-9. PubMed ID: 20940883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the complete photonic bandgap of two-dimensional photonic crystal.
    Chau YF; Wu FL; Jiang ZH; Li HY
    Opt Express; 2011 Mar; 19(6):4862-7. PubMed ID: 21445122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic crystal vertical-cavity surface-emitting lasers with true photonic bandgap.
    Panajotov K; Dems M
    Opt Lett; 2010 Mar; 35(6):829-31. PubMed ID: 20237613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.