These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21886945)

  • 1. Development of Microfabricated Magnetic Actuators for Removing Cellular Occlusion.
    Lee SA; Lee H; Pinney JR; Khialeeva E; Bergsneider M; Judy JW
    J Micromech Microeng; 2011 May; 21(5):54006. PubMed ID: 21886945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional evaluation of magnetic microactuators for removing biological accumulation: an in vitro study.
    Lee SA; Pinney JR; Khialeeva E; Bergsneider M; Judy JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():947-50. PubMed ID: 19162814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-biofouling implantable catheter using thin-film magnetic microactuators.
    Yang Q; Park H; Nguyen TNH; Rhoads JF; Lee A; Bentley RT; Judy JW; Lee H
    Sens Actuators B Chem; 2018 Nov; 273():1694-1704. PubMed ID: 34276138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyimide-based magnetic microactuators for biofouling removal.
    Qi Yang ; Tran Nguyen ; Chunan Liu ; Miller J; Rhoads JF; Linnes J; Hyowon Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5757-5760. PubMed ID: 28269562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoresistor-Embedded Multifunctional Magnetic Microactuators for Implantable Self-Clearing Catheter.
    Yang Q; Lee A; Bentley RT; Lee H
    IEEE Sens J; 2019 Feb; 19(4):1373-1378. PubMed ID: 31579395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards smart self-clearing glaucoma drainage device.
    Park H; Raffiee AH; John SWM; Ardekani AM; Lee H
    Microsyst Nanoeng; 2018; 4():35. PubMed ID: 31057923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI compatibility of microfabricated magnetic actuators for implantable catheters: Mechanical evaluations.
    Lee H; Xu Q; Ephrati J; Bergsneider M; Judy JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():907-10. PubMed ID: 21096979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Evaluation of Unobstructing Magnetic Microactuators for Implantable Ventricular Catheters.
    Lee H; Kolahi K; Bergsneider M; Judy JW
    J Microelectromech Syst; 2014 Aug; 23(4):795-802. PubMed ID: 29151776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microheater Actuators as a Versatile Platform for Strain Engineering in 2D Materials.
    Ryu YK; Carrascoso F; López-Nebreda R; Agraït N; Frisenda R; Castellanos-Gomez A
    Nano Lett; 2020 Jul; 20(7):5339-5345. PubMed ID: 32491864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape Memory Alloy (SMA)-Based Microscale Actuators with 60% Deformation Rate and 1.6 kHz Actuation Speed.
    Lee HT; Kim MS; Lee GY; Kim CS; Ahn SH
    Small; 2018 Jun; 14(23):e1801023. PubMed ID: 29717811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator.
    Koh KH; Kobayashi T; Lee C
    Opt Express; 2011 Jul; 19(15):13812-24. PubMed ID: 21934742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing efficiency, speed, and responsivity of vanadium dioxide based photothermally driven actuators using single-wall carbon nanotube thin-films.
    Wang T; Torres D; Fernández FE; Green AJ; Wang C; Sepúlveda N
    ACS Nano; 2015 Apr; 9(4):4371-8. PubMed ID: 25853931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a Dielectric Elastomer Resonator Driven Flapping Wing Micro Air Vehicle.
    Cao C; Burgess S; Conn AT
    Front Robot AI; 2018; 5():137. PubMed ID: 33501015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.
    Streque J; Talbi A; Pernod P; Preobrazhensky V
    IEEE Trans Haptics; 2010; 3(2):88-97. PubMed ID: 27788116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance limits of microactuation with vanadium dioxide as a solid engine.
    Wang K; Cheng C; Cardona E; Guan J; Liu K; Wu J
    ACS Nano; 2013 Mar; 7(3):2266-72. PubMed ID: 23373467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Sensing Pneumatic Compressing Actuator.
    Lin N; Zheng H; Li Y; Wang R; Chen X; Zhang X
    Front Neurorobot; 2020; 14():572856. PubMed ID: 33362501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of actuation sequence on flow rates of peristaltic micropumps with PZT actuators.
    Jang LS; Shu K; Yu YC; Li YJ; Chen CH
    Biomed Microdevices; 2009 Feb; 11(1):173-81. PubMed ID: 18821016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic microactuators for MEMS-enabled ventricular catheters for hydrocephalus.
    Lee SA; Vasquez DJ; Bergsneider M; Judy JW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2494-7. PubMed ID: 17946960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actuation of Flexible Membranes via Capillary Force: Single-Active-Surface Experiments.
    Barth C; Knospe C
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.