These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21887125)

  • 1. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering.
    Lewitus DY; Landers J; Branch J; Smith KL; Callegari G; Kohn J; Neimark AV
    Adv Funct Mater; 2011 Jul; 21(14):2624-2632. PubMed ID: 21887125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2627-2637. PubMed ID: 33821604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose Nanofiber/Carbon Nanotube Conductive Nano-Network as a Reinforcement Template for Polydimethylsiloxane Nanocomposite.
    Chen C; Bu X; Feng Q; Li D
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations.
    Eskandari P; Abousalman-Rezvani Z; Roghani-Mamaqani H; Salami-Kalajahi M
    Adv Colloid Interface Sci; 2021 Aug; 294():102471. PubMed ID: 34214841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing an ultrathin silica layer for highly durable carbon nanofibers as the carbon support in polymer electrolyte fuel cells.
    Hwang SM; Park JH; Lim S; Jung DH; Guim H; Yoon YG; Yim SD; Kim TY
    Nanoscale; 2014 Oct; 6(20):12111-9. PubMed ID: 25196022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review.
    Jiang F; Xu XW; Chen FQ; Weng HF; Chen J; Ru Y; Xiao Q; Xiao AF
    Mar Drugs; 2023 May; 21(5):. PubMed ID: 37233493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Polymer-Coated Carbon Nanotube Flexible Microelectrodes for Biomedical Applications.
    Ruhunage C; Dhawan V; Nawarathne CP; Hoque A; Cui XT; Alvarez NT
    Bioengineering (Basel); 2023 May; 10(6):. PubMed ID: 37370578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview.
    Mohd Nurazzi N; Asyraf MRM; Khalina A; Abdullah N; Sabaruddin FA; Kamarudin SH; Ahmad S; Mahat AM; Lee CL; Aisyah HA; Norrrahim MNF; Ilyas RA; Harussani MM; Ishak MR; Sapuan SM
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33810584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research progress of neural tissue engineering based on electrically conductive carbon nanotube scaffold].
    Xiang N; Wang G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Nov; 25(11):1389-92. PubMed ID: 22229201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanotube Composites with Bottlebrush Elastomers for Compliant Electrodes.
    Self JL; Reynolds VG; Blankenship J; Mee E; Guo J; Albanese K; Xie R; Hawker CJ; de Alaniz JR; Chabinyc ML; Bates CM
    ACS Polym Au; 2022 Feb; 2(1):27-34. PubMed ID: 36855747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agarose-based biomaterials for tissue engineering.
    Zarrintaj P; Manouchehri S; Ahmadi Z; Saeb MR; Urbanska AM; Kaplan DL; Mozafari M
    Carbohydr Polym; 2018 May; 187():66-84. PubMed ID: 29486846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics.
    Zhang X; Lu W; Zhou G; Li Q
    Adv Mater; 2020 Feb; 32(5):e1902028. PubMed ID: 31250496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube Fibers Decorated with MnO
    Zhang L; Zhang X; Wang J; Seveno D; Fransaer J; Locquet JP; Seo JW
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.
    Cao S; Feng X; Song Y; Xue X; Liu H; Miao M; Fang J; Shi L
    ACS Appl Mater Interfaces; 2015 May; 7(20):10695-701. PubMed ID: 25938940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced reduction of single-wall carbon nanotube cytotoxicity in vitro: Applying a novel method of arginine functionalization.
    Charbgoo F; Behmanesh M; Nikkhah M
    Biotechnol Appl Biochem; 2015; 62(5):598-605. PubMed ID: 25347997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube fibers are compatible with Mammalian cells and neurons.
    Dubin RA; Callegari G; Kohn J; Neimark A
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):11-4. PubMed ID: 18334451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembled Hybrid Materials Based on Organic Nanocrystals and Carbon Nanotubes.
    Niazov-Elkan A; Weissman H; Dutta S; Cohen SR; Iron MA; Pinkas I; Bendikov T; Rybtchinski B
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29171679
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.