These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21887374)

  • 1. Fatty acid and peptide profiles in plasma membrane and membrane rafts of PUFA supplemented RAW264.7 macrophages.
    Schumann J; Leichtle A; Thiery J; Fuhrmann H
    PLoS One; 2011; 6(8):e24066. PubMed ID: 21887374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid composition of membrane microdomains isolated detergent-free from PUFA supplemented RAW264.7 macrophages.
    Hellwing C; Tigistu-Sahle F; Fuhrmann H; Käkelä R; Schumann J
    J Cell Physiol; 2018 Mar; 233(3):2602-2612. PubMed ID: 28782808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nutritional significance of lipid rafts.
    Yaqoob P
    Annu Rev Nutr; 2009; 29():257-82. PubMed ID: 19400697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyunsaturated eicosapentaenoic acid changes lipid composition in lipid rafts.
    Li Q; Tan L; Wang C; Li N; Li Y; Xu G; Li J
    Eur J Nutr; 2006 Mar; 45(3):144-51. PubMed ID: 16133744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition.
    Stulnig TM; Huber J; Leitinger N; Imre EM; Angelisova P; Nowotny P; Waldhausl W
    J Biol Chem; 2001 Oct; 276(40):37335-40. PubMed ID: 11489905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of unsaturated fatty acids on membrane composition and signal transduction in HT-29 human colon cancer cells.
    Awad AB; Young AL; Fink CS
    Cancer Lett; 1996 Nov; 108(1):25-33. PubMed ID: 8950205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-physical changes in cell membrane microdomains of breast cancer cells after omega-3 PUFA incorporation.
    Corsetto PA; Cremona A; Montorfano G; Jovenitti IE; Orsini F; Arosio P; Rizzo AM
    Cell Biochem Biophys; 2012 Sep; 64(1):45-59. PubMed ID: 22622660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary ω3-and ω6-Polyunsaturated fatty acids reconstitute fertility of Juvenile and adult Fads2-Deficient mice.
    Stoffel W; Schmidt-Soltau I; Binczek E; Thomas A; Thevis M; Wegner I
    Mol Metab; 2020 Jun; 36():100974. PubMed ID: 32272092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyunsaturated fatty acid supplements modulate mast cell membrane microdomain composition.
    Basiouni S; Stöckel K; Fuhrmann H; Schumann J
    Cell Immunol; 2012; 275(1-2):42-6. PubMed ID: 22486927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Membrane Phospholipids Containing Long-Chain Polyunsaturated Fatty Acids and Their Oxidation Products Orchestrate Lipid Raft Dynamics to Control Inflammation.
    Virk R; Cook K; Cavazos A; Wassall SR; Gowdy KM; Shaikh SR
    J Nutr; 2024 Sep; 154(9):2862-2870. PubMed ID: 39025329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts.
    Shaikh SR
    J Nutr Biochem; 2012 Feb; 23(2):101-5. PubMed ID: 22137258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of n-3 polyunsaturated fatty acids reduces atherogenesis in apolipoprotein E-deficient mice by inhibiting macrophage activation.
    Takashima A; Fukuda D; Tanaka K; Higashikuni Y; Hirata Y; Nishimoto S; Yagi S; Yamada H; Soeki T; Wakatsuki T; Taketani Y; Shimabukuro M; Sata M
    Atherosclerosis; 2016 Nov; 254():142-150. PubMed ID: 27744130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restored in vivo-like membrane lipidomics positively influence in vitro features of cultured mesenchymal stromal/stem cells derived from human placenta.
    Chatgilialoglu A; Rossi M; Alviano F; Poggi P; Zannini C; Marchionni C; Ricci F; Tazzari PL; Taglioli V; Calder PC; Bonsi L
    Stem Cell Res Ther; 2017 Feb; 8(1):31. PubMed ID: 28173875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-3 Polyunsaturated Fatty Acids, Lipid Microclusters, and Vitamin E.
    Shaikh SR; Wassall SR; Brown DA; Kosaraju R
    Curr Top Membr; 2015; 75():209-31. PubMed ID: 26015284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts.
    Fan YY; McMurray DN; Ly LH; Chapkin RS
    J Nutr; 2003 Jun; 133(6):1913-20. PubMed ID: 12771339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of RAW264.7 macrophages with essential 18-carbon fatty acids affects both respiratory burst and production of immune modulating cytokines.
    Walloschke B; Fuhrmann H; Schumann J
    J Nutr Biochem; 2010 Jun; 21(6):556-60. PubMed ID: 19447017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts.
    Li Q; Wang M; Tan L; Wang C; Ma J; Li N; Li Y; Xu G; Li J
    J Lipid Res; 2005 Sep; 46(9):1904-13. PubMed ID: 15930520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support.
    Siddiqui RA; Harvey KA; Zaloga GP; Stillwell W
    Nutr Clin Pract; 2007 Feb; 22(1):74-88. PubMed ID: 17242459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition.
    Falcone DL; Ogas JP; Somerville CR
    BMC Plant Biol; 2004 Sep; 4():17. PubMed ID: 15377388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary fats and membrane function: implications for metabolism and disease.
    Hulbert AJ; Turner N; Storlien LH; Else PL
    Biol Rev Camb Philos Soc; 2005 Feb; 80(1):155-69. PubMed ID: 15727042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.