These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21887674)

  • 21. Can rodent models of diabetic kidney disease clarify the significance of early hyperfiltration?: recognizing clinical and experimental uncertainties.
    Levine DZ
    Clin Sci (Lond); 2008 Jan; 114(2):109-18. PubMed ID: 18062776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primary kidney growth and its consequences at the onset of diabetes mellitus.
    Satriano J; Vallon V
    Amino Acids; 2006 Jul; 31(1):1-9. PubMed ID: 16733619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated glomerular filtration rate in early diabetes may be explained by increased sodium reabsorption secondary to an impairment in renal tubular handling of phosphate.
    Ditzel J; Brøchner-Mortensen J; Rødbro P
    Horm Metab Res Suppl; 1981; 11():87-9. PubMed ID: 6947954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes.
    Lau C; Sudbury I; Thomson M; Howard PL; Magil AB; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1761-70. PubMed ID: 19339676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Renal hyperfiltration is associated with glucose-dependent changes in fractional excretion of sodium in patients with uncomplicated type 1 diabetes.
    Yang GK; Har RL; Lytvyn Y; Yip P; Cherney DZ
    Diabetes Care; 2014 Oct; 37(10):2774-81. PubMed ID: 25011944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glomerular dysfunction in diabetic nephropathy.
    Zucchelli P; Zuccalà A; Sturani A
    Postgrad Med J; 1988; 64 Suppl 3():22-30; discussion 48-9. PubMed ID: 3074295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Glomerulo-tubular balance in diabetes mellitus: molecular evidence and clinical consequences].
    Evangelista C; Rizzo M; Cantone A; Corbo G; Di Donato L; Trocino C; Zacchia M; Capasso G
    G Ital Nefrol; 2006; 23 Suppl 34():S16-20. PubMed ID: 16633989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced adenosine A2a receptor-mediated efferent arteriolar vasodilation contributes to diabetes-induced glomerular hyperfiltration.
    Persson P; Hansell P; Palm F
    Kidney Int; 2015 Jan; 87(1):109-15. PubMed ID: 24940797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Electrolyte and acid-base balance disorders in advanced chronic kidney disease].
    Alcázar Arroyo R
    Nefrologia; 2008; 28 Suppl 3():87-93. PubMed ID: 19018744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin.
    Steiner RW; Tucker BJ; Blantz RC
    J Clin Invest; 1979 Aug; 64(2):503-12. PubMed ID: 457865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The salt paradox of the early diabetic kidney is independent of renal innervation.
    Birk C; Richter K; Huang DY; Piesch C; Luippold G; Vallon V
    Kidney Blood Press Res; 2003; 26(5-6):344-50. PubMed ID: 14610339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney.
    Vallon V; Thomson SC
    Annu Rev Physiol; 2012; 74():351-75. PubMed ID: 22335797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consequences of Glomerular Hyperfiltration: The Role of Physical Forces in the Pathogenesis of Chronic Kidney Disease in Diabetes and Obesity.
    Chagnac A; Zingerman B; Rozen-Zvi B; Herman-Edelstein M
    Nephron; 2019; 143(1):38-42. PubMed ID: 30947190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preliminary study of renal hemodynamic alteration in early childhood diabetes mellitus.
    Wacharasindhu S; Rugpolmuang R; Roonghiranwat T; Supornsilchai V; Sahakitrungruang T; Aroonparkmongkol S; Chaiwatanarat T
    Ren Fail; 2013; 35(1):98-100. PubMed ID: 23113652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease.
    Yang Y; Xu G
    Front Endocrinol (Lausanne); 2022; 13():872918. PubMed ID: 35663316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Hyperfiltering Kidney in Diabetes.
    Trevisan R; Dodesini AR
    Nephron; 2017; 136(4):277-280. PubMed ID: 27978521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathophysiology of the diabetic kidney.
    Vallon V; Komers R
    Compr Physiol; 2011 Jul; 1(3):1175-232. PubMed ID: 23733640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperfiltration, nitric oxide, and diabetic nephropathy.
    Levine DZ
    Curr Hypertens Rep; 2006 May; 8(2):153-7. PubMed ID: 16672149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of hyperfiltration on the diabetic kidney.
    Premaratne E; Verma S; Ekinci EI; Theverkalam G; Jerums G; MacIsaac RJ
    Diabetes Metab; 2015 Feb; 41(1):5-17. PubMed ID: 25457474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The proximal tubule in the pathophysiology of the diabetic kidney.
    Vallon V
    Am J Physiol Regul Integr Comp Physiol; 2011 May; 300(5):R1009-22. PubMed ID: 21228342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.