These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 21887835)
41. Efficient immobilization of a ligand antibody with high antigen-binding activity by use of a polystyrene-binding peptide and an intelligent microtiter plate. Kumada Y; Hamasaki K; Shiritani Y; Ohse T; Kishimoto M J Biotechnol; 2009 Jun; 142(2):135-41. PubMed ID: 19501265 [TBL] [Abstract][Full Text] [Related]
42. Small-molecule ligands of GD2 ganglioside, designed from NMR studies, exhibit induced-fit binding and bioactivity. Tong W; Gagnon M; Sprules T; Gilbert M; Chowdhury S; Meerovitch K; Hansford K; Purisima EO; Blankenship JW; Cheung NK; Gehring K; Lubell WD; Saragovi HU Chem Biol; 2010 Feb; 17(2):183-94. PubMed ID: 20189108 [TBL] [Abstract][Full Text] [Related]
43. Understanding water: molecular dynamics simulations of myoglobin. Gu W; Garcia AE; Schoenborn BP Basic Life Sci; 1996; 64():289-98. PubMed ID: 9092458 [TBL] [Abstract][Full Text] [Related]
44. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy. Wang YX; Freedberg DI; Grzesiek S; Torchia DA; Wingfield PT; Kaufman JD; Stahl SJ; Chang CH; Hodge CN Biochemistry; 1996 Oct; 35(39):12694-704. PubMed ID: 8841113 [TBL] [Abstract][Full Text] [Related]
45. Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. Lu Y; Wang R; Yang CY; Wang S J Chem Inf Model; 2007; 47(2):668-75. PubMed ID: 17266298 [TBL] [Abstract][Full Text] [Related]
46. Conservation of water molecules in an antibody-antigen interaction. Braden BC; Fields BA; Poljak RJ J Mol Recognit; 1995; 8(5):317-25. PubMed ID: 8619952 [TBL] [Abstract][Full Text] [Related]
47. MHC-peptide binding is assisted by bound water molecules. Petrone PM; Garcia AE J Mol Biol; 2004 Apr; 338(2):419-35. PubMed ID: 15066441 [TBL] [Abstract][Full Text] [Related]
48. Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3. Paula S; Monson N; Ball WJ Proteins; 2005 Aug; 60(3):382-91. PubMed ID: 15971203 [TBL] [Abstract][Full Text] [Related]
49. Molecular dynamics simulations of small peptides: dependence on dielectric model and pH. Daggett V; Kollman PA; Kuntz ID Biopolymers; 1991 Feb; 31(3):285-304. PubMed ID: 1868159 [TBL] [Abstract][Full Text] [Related]
50. Two different methods result in the selection of peptides that induce a protective antibody response to Neisseria meningitidis serogroup C. Prinz DM; Smithson SL; Westerink MA J Immunol Methods; 2004 Feb; 285(1):1-14. PubMed ID: 14871530 [TBL] [Abstract][Full Text] [Related]
51. Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution. Haselhorst T; Lamerz AC; Itzstein Mv Methods Mol Biol; 2009; 534():375-86. PubMed ID: 19277538 [TBL] [Abstract][Full Text] [Related]
52. Local order, energy, and mobility of water molecules in the hydration shell of small peptides. Agarwal M; Kushwaha HR; Chakravarty C J Phys Chem B; 2010 Jan; 114(1):651-9. PubMed ID: 19863091 [TBL] [Abstract][Full Text] [Related]
53. Binding mode prediction for a flexible ligand in a flexible pocket using multi-conformation simulated annealing pseudo crystallographic refinement. Ota N; Agard DA J Mol Biol; 2001 Nov; 314(3):607-17. PubMed ID: 11846570 [TBL] [Abstract][Full Text] [Related]
54. Analysis and optimization of interactions between peptides mimicking the GD2 ganglioside and the monoclonal antibody 14G2a. Horwacik I; Kurciński M; Bzowska M; Kowalczyk AK; Czaplicki D; Koliński A; Rokita H Int J Mol Med; 2011 Jul; 28(1):47-57. PubMed ID: 21455557 [TBL] [Abstract][Full Text] [Related]
55. NMR studies of carbohydrates and carbohydrate-mimetic peptides recognized by an anti-group B Streptococcus antibody. Johnson MA; Jaseja M; Zou W; Jennings HJ; Copie V; Pinto BM; Pincus SH J Biol Chem; 2003 Jul; 278(27):24740-52. PubMed ID: 12700231 [TBL] [Abstract][Full Text] [Related]
56. SALMON: solvent accessibility, ligand binding, and mapping of ligand orientation by NMR spectroscopy. Ludwig C; Michiels PJ; Wu X; Kavanagh KL; Pilka E; Jansson A; Oppermann U; Günther UL J Med Chem; 2008 Jan; 51(1):1-3. PubMed ID: 18062662 [TBL] [Abstract][Full Text] [Related]
57. NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide. Johnson MA; Rotondo A; Pinto BM Biochemistry; 2002 Feb; 41(7):2149-57. PubMed ID: 11841205 [TBL] [Abstract][Full Text] [Related]
58. Identification of carbohydrate-binding proteins by carbohydrate mimicry peptides. Fukuda MN; Yoneyama T Methods Enzymol; 2010; 478():563-72. PubMed ID: 20816499 [TBL] [Abstract][Full Text] [Related]
59. Simulation of carbohydrates, from molecular docking to dynamics in water. Sapay N; Nurisso A; Imberty A Methods Mol Biol; 2013; 924():469-83. PubMed ID: 23034760 [TBL] [Abstract][Full Text] [Related]
60. Water molecules inside protein structure affect binding of monosaccharides with HIV-1 antibody 2G12. Ueno-Noto K; Takano K J Comput Chem; 2016 Oct; 37(26):2341-8. PubMed ID: 27388036 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]