BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2188816)

  • 21. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part I: Historical perspectives, histochemical methods and cell kinetics.
    Dolbeare F
    Histochem J; 1995 May; 27(5):339-69. PubMed ID: 7657555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double labeling and in vitro versus in vivo incorporation of bromodeoxyuridine in patients with acute nonlymphocytic leukemia.
    Raza A; Ucar K; Preisler HD
    Cytometry; 1985 Nov; 6(6):633-40. PubMed ID: 3905302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formamide as a denaturant for bisulfite conversion of genomic DNA: Bisulfite sequencing of the GSTPi and RARbeta2 genes of 43 formalin-fixed paraffin-embedded prostate cancer specimens.
    Zon G; Barker MA; Kaur P; Groshen S; Jones LW; Imam SA; Boyd VL
    Anal Biochem; 2009 Sep; 392(2):117-25. PubMed ID: 19505431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow cytometric estimation of cell cycle parameters using a monoclonal antibody to bromodeoxyuridine.
    Sasaki K; Murakami T; Ogino T; Takahashi M; Kawasaki S
    Cytometry; 1986 Jul; 7(4):391-5. PubMed ID: 3089742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic heterogeneity of an experimental tumour revealed by BrdUrd incorporation and mathematical modelling.
    Bertuzzi A; Faretta M; Gandolfi A; Sinisgalli C; Starace G; Valoti G; Ubezio P
    Bull Math Biol; 2002 Mar; 64(2):355-84. PubMed ID: 11926121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Vindelov et al. and bromodeoxyuridine/DNA double-staining flow cytometry methods for analysis of cell cycle distribution in rat thymocytes.
    Orfao A; Carbajo S; Dolbeare F; Ciudad J; Lopez A; Carbajo-Perez E
    Cytometry; 1996 Sep; 25(1):104-8. PubMed ID: 8875060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Eukaryotic DNA replication is a topographically ordered process.
    Humbert C; Usson Y
    Cytometry; 1992; 13(6):603-14. PubMed ID: 1451592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An immunofluorescence method for monitoring DNA synthesis by flow cytometry.
    Gratzner HG; Leif RC
    Cytometry; 1981 May; 1(6):385-93. PubMed ID: 7023886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Flow cytometric dual-parameter analysis of human leukemic cells using monoclonal anti-BrdUrd antibody].
    Sasaki K; Murakami T; Ogino T; Takahashi M
    Gan No Rinsho; 1985 May; 31(5):549-51. PubMed ID: 3860667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differentiation of mitotic melanoma cells from G2 cells and their isolation by use of 5-bromo-2'-deoxyuridine and propidium iodide.
    Trinkle LS; Swope VB; Abdel-Malek ZA; Nordlund JJ
    Cytometry; 1988 Sep; 9(5):432-5. PubMed ID: 3180943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A rapid flow cytometric method for bivariate bromodeoxyuridine/DNA analysis using simultaneous proteolytic enzyme digestion and acid denaturation.
    van Erp PE; Brons PP; Boezeman JB; de Jongh GJ; Bauer FW
    Cytometry; 1988 Nov; 9(6):627-30. PubMed ID: 2463135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methods for cell proliferation analysis by fluorescent image cytometry.
    Souchier C; Ffrench M; Benchaib M; Catallo R; Bryon PA
    Cytometry; 1995 Jul; 20(3):203-9. PubMed ID: 7587705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA segments sensitive to single-strand-specific nucleases are present in chromatin of mitotic cells.
    Juan G; Pan W; Darzynkiewicz Z
    Exp Cell Res; 1996 Sep; 227(2):197-202. PubMed ID: 8831556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous triple staining for hypoxia, proliferation, and DNA content in murine tumours.
    Webster L; Hodgkiss RJ; Wilson GD
    Cytometry; 1995 Dec; 21(4):344-51. PubMed ID: 8608732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Statistical confirmation that immunofluorescent detection of DNA repair in human fibroblasts by measurement of bromodeoxyuridine incorporation is stoichiometric and sensitive.
    Selden JR; Dolbeare F; Clair JH; Nichols WW; Miller JE; Kleemeyer KM; Hyland RJ; DeLuca JG
    Cytometry; 1993; 14(2):154-67. PubMed ID: 8440149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid in vitro bromodeoxyuridine labeling method for monitoring of therapy response in solid human tumors.
    Hemmer J
    Cytometry; 1990; 11(5):603-9. PubMed ID: 2379451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of four methods of DNA distribution data analysis based on bromodeoxyuridine/DNA bivariate data.
    Lacombe F; Belloc F; Bernard P; Boisseau MR
    Cytometry; 1988 May; 9(3):245-53. PubMed ID: 3378459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Application of simultaneous flow cytometric bromodeoxyuridine (BrdU)/DNA analysis. 1. Basic and technical studies].
    Shimabukuro T
    Hinyokika Kiyo; 1988 Aug; 34(8):1339-48. PubMed ID: 3057828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A method to estimate cell cycle time and growth fraction using bromodeoxyuridine-flow cytometry data from a single sample.
    Eidukevicius R; Characiejus D; Janavicius R; Kazlauskaite N; Pasukoniene V; Mauricas M; Den Otter W
    BMC Cancer; 2005 Sep; 5():122. PubMed ID: 16176590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of bromodeoxyuridine incorporation by alteration of the fluorescence emission from nucleic acid binding dyes using only an argon ion laser.
    Frey T
    Cytometry; 1994 Dec; 17(4):310-8. PubMed ID: 7875038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.