These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21888382)

  • 21. General and reliable quantitative measurement of fluorescence resonance energy transfer using three fluorescence channels.
    Xie F; Zhu J; Deng C; Huang G; Mitchelson K; Cheng J
    Analyst; 2012 Feb; 137(4):1013-9. PubMed ID: 22234659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single lanthanide-doped oxide nanoparticles as donors in fluorescence resonance energy transfer experiments.
    Casanova D; Giaume D; Gacoin T; Boilot JP; Alexandrou A
    J Phys Chem B; 2006 Oct; 110(39):19264-70. PubMed ID: 17004778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami.
    Stein IH; Steinhauer C; Tinnefeld P
    J Am Chem Soc; 2011 Mar; 133(12):4193-5. PubMed ID: 21250689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence coincidence spectroscopy for single-molecule fluorescence resonance energy-transfer measurements.
    Orte A; Clarke RW; Klenerman D
    Anal Chem; 2008 Nov; 80(22):8389-97. PubMed ID: 18855410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence resonance energy transfer (FRET) using ssDNA binding fluorescent dye.
    Orpana AK
    Biomol Eng; 2004 Apr; 21(2):45-50. PubMed ID: 15113557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits.
    Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA
    J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier.
    Yun CS; Javier A; Jennings T; Fisher M; Hira S; Peterson S; Hopkins B; Reich NO; Strouse GF
    J Am Chem Soc; 2005 Mar; 127(9):3115-9. PubMed ID: 15740151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Indocyanine dyes approach free rotation at the 3' terminus of A-RNA: a comparison with the 5' terminus and consequences for fluorescence resonance energy transfer.
    Milas P; Gamari BD; Parrot L; Krueger BP; Rahmanseresht S; Moore J; Goldner LS
    J Phys Chem B; 2013 Jul; 117(29):8649-58. PubMed ID: 23799279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states.
    Kalinin S; Valeri A; Antonik M; Felekyan S; Seidel CA
    J Phys Chem B; 2010 Jun; 114(23):7983-95. PubMed ID: 20486698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlations of structure and rates of energy transfer for through-bond energy-transfer cassettes.
    Kim TG; Castro JC; Loudet A; Jiao JG; Hochstrasser RM; Burgess K; Topp MR
    J Phys Chem A; 2006 Jan; 110(1):20-7. PubMed ID: 16392835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy.
    Leopold HJ; Leighton R; Schwarz J; Boersma AJ; Sheets ED; Heikal AA
    J Phys Chem B; 2019 Jan; 123(2):379-393. PubMed ID: 30571116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applying spectral fingerprinting to the analysis of FRET images.
    Neher RA; Neher E
    Microsc Res Tech; 2004 Jun; 64(2):185-95. PubMed ID: 15352090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum dot-based resonance energy transfer and its growing application in biology.
    Medintz IL; Mattoussi H
    Phys Chem Chem Phys; 2009 Jan; 11(1):17-45. PubMed ID: 19081907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent resonant energy transfer: correlated fluctuations of donor and acceptor.
    Yu ZG
    J Chem Phys; 2007 Dec; 127(22):221101. PubMed ID: 18081378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System.
    Dörfler T; Eilert T; Röcker C; Nagy J; Michaelis J
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zinc porphyrin as a donor for FRET in Zn(II)cytochrome c.
    Lee AJ; Ensign AA; Krauss TD; Bren KL
    J Am Chem Soc; 2010 Feb; 132(6):1752-3. PubMed ID: 20102193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor-acceptor pairs: quantitative spectroscopic methods.
    Majumdar ZK; Hickerson R; Noller HF; Clegg RM
    J Mol Biol; 2005 Sep; 351(5):1123-45. PubMed ID: 16055154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectral resolution in conjunction with polar plots improves the accuracy and reliability of FLIM measurements and estimates of FRET efficiency.
    Chen YC; Clegg RM
    J Microsc; 2011 Oct; 244(1):21-37. PubMed ID: 21801176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FRET and FCS--friends or foes?
    Sahoo H; Schwille P
    Chemphyschem; 2011 Feb; 12(3):532-41. PubMed ID: 21308943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.